BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 31024607)

  • 41. Improved estimation of aboveground biomass in wheat from RGB imagery and point cloud data acquired with a low-cost unmanned aerial vehicle system.
    Lu N; Zhou J; Han Z; Li D; Cao Q; Yao X; Tian Y; Zhu Y; Cao W; Cheng T
    Plant Methods; 2019; 15():17. PubMed ID: 30828356
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Radiative transfer model inversion using high-resolution hyperspectral airborne imagery - Retrieving maize LAI to access biomass and grain yield.
    Kayad A; Rodrigues FA; Naranjo S; Sozzi M; Pirotti F; Marinello F; Schulthess U; Defourny P; Gerard B; Weiss M
    Field Crops Res; 2022 Jun; 282():108449. PubMed ID: 35663617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Estimation of Nitrogen Nutrition Status in Winter Wheat From Unmanned Aerial Vehicle Based Multi-Angular Multispectral Imagery.
    Lu N; Wang W; Zhang Q; Li D; Yao X; Tian Y; Zhu Y; Cao W; Baret F; Liu S; Cheng T
    Front Plant Sci; 2019; 10():1601. PubMed ID: 31921250
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Evaluating Hyperspectral Vegetation Indices for Leaf Area Index Estimation of
    Din M; Zheng W; Rashid M; Wang S; Shi Z
    Front Plant Sci; 2017; 8():820. PubMed ID: 28588596
    [TBL] [Abstract][Full Text] [Related]  

  • 45. [The inversion of nitrogen balance index in typical growth period of soybean based on high definition digital image and hyperspectral data on unmanned aerial vehicles].
    Li CC; Chen P; Lu GZ; Ma CY; Ma XX; Wang ST
    Ying Yong Sheng Tai Xue Bao; 2018 Apr; 29(4):1225-1232. PubMed ID: 29726232
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Comparison of Spaceborne and UAV-Borne Remote Sensing Spectral Data for Estimating Monsoon Crop Vegetation Parameters.
    Wijesingha J; Dayananda S; Wachendorf M; Astor T
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33924176
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The Optimal Image Date Selection for Evaluating Cultivated Land Quality Based on Gaofen-1 Images.
    Xia Z; Peng Y; Liu S; Liu Z; Wang G; Zhu AX; Hu Y
    Sensors (Basel); 2019 Nov; 19(22):. PubMed ID: 31766165
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Tea cultivar classification and biochemical parameter estimation from hyperspectral imagery obtained by UAV.
    Tu Y; Bian M; Wan Y; Fei T
    PeerJ; 2018; 6():e4858. PubMed ID: 29868272
    [TBL] [Abstract][Full Text] [Related]  

  • 49. UAV Multisensory Data Fusion and Multi-Task Deep Learning for High-Throughput Maize Phenotyping.
    Nguyen C; Sagan V; Bhadra S; Moose S
    Sensors (Basel); 2023 Feb; 23(4):. PubMed ID: 36850425
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Field-scale rice yield estimation based on UAV-based MiniSAR data with Ku band and modified water-cloud model of panicle layer at panicle stage.
    Wang Z; Wang S; Wang H; Liu L; Li Z; Zhu Y; Wang K
    Front Plant Sci; 2022; 13():1001779. PubMed ID: 36275598
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Optimizing window size and directional parameters of GLCM texture features for estimating rice AGB based on UAVs multispectral imagery.
    Liu J; Zhu Y; Song L; Su X; Li J; Zheng J; Zhu X; Ren L; Wang W; Li X
    Front Plant Sci; 2023; 14():1284235. PubMed ID: 38192693
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Estimating the rice nitrogen nutrition index based on hyperspectral transform technology.
    Yu F; Bai J; Jin Z; Zhang H; Yang J; Xu T
    Front Plant Sci; 2023; 14():1118098. PubMed ID: 37035061
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Estimation of Peanut Leaf Area Index from Unmanned Aerial Vehicle Multispectral Images.
    Qi H; Zhu B; Wu Z; Liang Y; Li J; Wang L; Chen T; Lan Y; Zhang L
    Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33255612
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Classification of Rice Yield Using UAV-Based Hyperspectral Imagery and Lodging Feature.
    Wang J; Wu B; Kohnen MV; Lin D; Yang C; Wang X; Qiang A; Liu W; Kang J; Li H; Shen J; Yao T; Su J; Li B; Gu L
    Plant Phenomics; 2021; 2021():9765952. PubMed ID: 33851136
    [TBL] [Abstract][Full Text] [Related]  

  • 55. An integrative data-driven approach for monitoring corn biomass under irrigation water and nitrogen levels based on UAV-based imagery.
    Feizolahpour F; Besharat S; Feizizadeh B; Rezaverdinejad V; Hessari B
    Environ Monit Assess; 2023 Aug; 195(9):1081. PubMed ID: 37615731
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Assessing Grapevine Biophysical Parameters From Unmanned Aerial Vehicles Hyperspectral Imagery.
    Matese A; Di Gennaro SF; Orlandi G; Gatti M; Poni S
    Front Plant Sci; 2022; 13():898722. PubMed ID: 35769294
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Estimation of Rice Aboveground Biomass by UAV Imagery with Photosynthetic Accumulation Models.
    Yang K; Mo J; Luo S; Peng Y; Fang S; Wu X; Zhu R; Li Y; Yuan N; Zhou C; Gong Y
    Plant Phenomics; 2023; 5():0056. PubMed ID: 37273463
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ground-Based Hyperspectral Remote Sensing for Estimating Water Stress in Tomato Growth in Sandy Loam and Silty Loam Soils.
    Alordzinu KE; Li J; Lan Y; Appiah SA; Al Aasmi A; Wang H; Liao J; Sam-Amoah LK; Qiao S
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502595
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Method for accurate multi-growth-stage estimation of fractional vegetation cover using unmanned aerial vehicle remote sensing.
    Yue J; Guo W; Yang G; Zhou C; Feng H; Qiao H
    Plant Methods; 2021 May; 17(1):51. PubMed ID: 34001195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Estimation of Crop Growth Parameters Using UAV-Based Hyperspectral Remote Sensing Data.
    Tao H; Feng H; Xu L; Miao M; Long H; Yue J; Li Z; Yang G; Yang X; Fan L
    Sensors (Basel); 2020 Feb; 20(5):. PubMed ID: 32120958
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.