BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 31024898)

  • 1. Giant Vesicles Encapsulating Aqueous Two-Phase Systems: From Phase Diagrams to Membrane Shape Transformations.
    Liu Y; Lipowsky R; Dimova R
    Front Chem; 2019; 7():213. PubMed ID: 31024898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Patterns of Flexible Nanotubes Formed by Liquid-Ordered and Liquid-Disordered Membranes.
    Liu Y; Agudo-Canalejo J; Grafmüller A; Dimova R; Lipowsky R
    ACS Nano; 2016 Jan; 10(1):463-74. PubMed ID: 26588094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spontaneous tubulation of membranes and vesicles reveals membrane tension generated by spontaneous curvature.
    Lipowsky R
    Faraday Discuss; 2013; 161():305-31; discussion 419-59. PubMed ID: 23805747
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Concentration dependence of the interfacial tension for aqueous two-phase polymer solutions of dextran and polyethylene glycol.
    Liu Y; Lipowsky R; Dimova R
    Langmuir; 2012 Feb; 28(8):3831-9. PubMed ID: 22292882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Positioning lipid membrane domains in giant vesicles by micro-organization of aqueous cytoplasm mimic.
    Cans AS; Andes-Koback M; Keating CD
    J Am Chem Soc; 2008 Jun; 130(23):7400-6. PubMed ID: 18479139
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Complete budding and asymmetric division of primitive model cells to produce daughter vesicles with different interior and membrane compositions.
    Andes-Koback M; Keating CD
    J Am Chem Soc; 2011 Jun; 133(24):9545-55. PubMed ID: 21591721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molar mass fractionation in aqueous two-phase polymer solutions of dextran and poly(ethylene glycol).
    Zhao Z; Li Q; Ji X; Dimova R; Lipowsky R; Liu Y
    J Chromatogr A; 2016 Jun; 1452():107-15. PubMed ID: 27155914
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phase interfaces within different vesicle shapes.
    Xie Y; Guo K
    J Phys Condens Matter; 2018 Aug; 30(34):345102. PubMed ID: 30027892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane nanotubes induced by aqueous phase separation and stabilized by spontaneous curvature.
    Li Y; Lipowsky R; Dimova R
    Proc Natl Acad Sci U S A; 2011 Mar; 108(12):4731-6. PubMed ID: 21383120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple patterns of polymer gels in microspheres due to the interplay among phase separation, wetting, and gelation.
    Yanagisawa M; Nigorikawa S; Sakaue T; Fujiwara K; Tokita M
    Proc Natl Acad Sci U S A; 2014 Nov; 111(45):15894-9. PubMed ID: 25349417
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Super-Resolution Imaging of Highly Curved Membrane Structures in Giant Vesicles Encapsulating Molecular Condensates.
    Zhao Z; Roy D; Steinkühler J; Robinson T; Lipowsky R; Dimova R
    Adv Mater; 2022 Jan; 34(4):e2106633. PubMed ID: 34710248
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Membrane nanotubes transform into double-membrane sheets at condensate droplets.
    Zhao Z; Satarifard V; Lipowsky R; Dimova R
    Proc Natl Acad Sci U S A; 2024 Jun; 121(26):e2321579121. PubMed ID: 38900795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles.
    Lentz BR; McIntyre GF; Parks DJ; Yates JC; Massenburg D
    Biochemistry; 1992 Mar; 31(10):2643-53. PubMed ID: 1547207
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Budding and Fission of Nanovesicles Induced by Membrane Adsorption of Small Solutes.
    Ghosh R; Satarifard V; Grafmüller A; Lipowsky R
    ACS Nano; 2021 Apr; 15(4):7237-7248. PubMed ID: 33819031
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Budding and asymmetric protein microcompartmentation in giant vesicles containing two aqueous phases.
    Long MS; Cans AS; Keating CD
    J Am Chem Soc; 2008 Jan; 130(2):756-62. PubMed ID: 18092782
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous phase separation in giant vesicles.
    Helfrich MR; Mangeney-Slavin LK; Long MS; Djoko KY; Keating CD
    J Am Chem Soc; 2002 Nov; 124(45):13374-5. PubMed ID: 12418876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simple sugars shape giant vesicles into multispheres with many membrane necks.
    Bhatia T; Christ S; Steinkühler J; Dimova R; Lipowsky R
    Soft Matter; 2020 Feb; 16(5):1246-1258. PubMed ID: 31912078
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shapes of vesicles encapsulating two aqueous phases.
    Xiao W; Guo K
    Soft Matter; 2014 Apr; 10(15):2539-49. PubMed ID: 24647539
    [TBL] [Abstract][Full Text] [Related]  

  • 20. One-Step Generation of Cell-Encapsulating Compartments via Polyelectrolyte Complexation in an Aqueous Two Phase System.
    Hann SD; Niepa TH; Stebe KJ; Lee D
    ACS Appl Mater Interfaces; 2016 Sep; 8(38):25603-11. PubMed ID: 27580225
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.