These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 31024905)

  • 1. Imaging of Red-Shifted Light From Bioluminescent Tumors Using Fluorescence by Unbound Excitation From Luminescence.
    Sônego F; Bouccara S; Pons T; Lequeux N; Danckaert A; Tinevez JY; Alam IS; Shorte SL; Tournebize R
    Front Bioeng Biotechnol; 2019; 7():73. PubMed ID: 31024905
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In vivo bioluminescence imaging of murine xenograft cancer models with a red-shifted thermostable luciferase.
    Mezzanotte L; Fazzina R; Michelini E; Tonelli R; Pession A; Branchini B; Roda A
    Mol Imaging Biol; 2010 Aug; 12(4):406-14. PubMed ID: 19937390
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A novel luciferase fusion protein for highly sensitive optical imaging: from single-cell analysis to in vivo whole-body bioluminescence imaging.
    Mezzanotte L; Blankevoort V; Löwik CW; Kaijzel EL
    Anal Bioanal Chem; 2014 Sep; 406(23):5727-34. PubMed ID: 24958343
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluating Brightness and Spectral Properties of Click Beetle and Firefly Luciferases Using Luciferin Analogues: Identification of Preferred Pairings of Luciferase and Substrate for In Vivo Bioluminescence Imaging.
    Zambito G; Gaspar N; Ridwan Y; Hall MP; Shi C; Kirkland TA; Encell LP; Löwik C; Mezzanotte L
    Mol Imaging Biol; 2020 Dec; 22(6):1523-1531. PubMed ID: 32926287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of red-shifted firefly luciferase Ppy RE9 and conventional Luc2 as bioluminescence imaging reporter genes for in vivo imaging of stem cells.
    Liang Y; Walczak P; Bulte JW
    J Biomed Opt; 2012 Jan; 17(1):016004. PubMed ID: 22352654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro and in vivo demonstrations of Fluorescence by Unbound Excitation from Luminescence (FUEL).
    Dragavon J; Rekiki A; Theodorou I; Samson C; Blazquez S; Rogers KL; Tournebize R; Shorte S
    Methods Mol Biol; 2014; 1098():259-70. PubMed ID: 24166383
    [TBL] [Abstract][Full Text] [Related]  

  • 7. BRET based dual-colour (visible/near-infrared) molecular imaging using a quantum dot/EGFP-luciferase conjugate.
    Tsuboi S; Jin T
    RSC Adv; 2019 Oct; 9(60):34964-34971. PubMed ID: 35530680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimized Longitudinal Monitoring of Stem Cell Grafts in Mouse Brain Using a Novel Bioluminescent/Near Infrared Fluorescent Fusion Reporter.
    Mezzanotte L; Iljas JD; Que I; Chan A; Kaijzel E; Hoeben R; Löwik C
    Cell Transplant; 2017 Dec; 26(12):1878-1889. PubMed ID: 29390874
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioluminescence Resonance Energy Transfer (BRET) Coupled Near-Infrared Imaging of Apoptotic Cells.
    Tsuboi S; Jin T
    Methods Mol Biol; 2020; 2081():15-27. PubMed ID: 31721115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vivo excitation of nanoparticles using luminescent bacteria.
    Dragavon J; Blazquez S; Rekiki A; Samson C; Theodorou I; Rogers KL; Tournebize R; Shorte SL
    Proc Natl Acad Sci U S A; 2012 Jun; 109(23):8890-5. PubMed ID: 22615349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Near infrared bioluminescence resonance energy transfer from firefly luciferase--quantum dot bionanoconjugates.
    Alam R; Karam LM; Doane TL; Zylstra J; Fontaine DM; Branchini BR; Maye MM
    Nanotechnology; 2014 Dec; 25(49):495606. PubMed ID: 25414169
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sensitive dual color in vivo bioluminescence imaging using a new red codon optimized firefly luciferase and a green click beetle luciferase.
    Mezzanotte L; Que I; Kaijzel E; Branchini B; Roda A; Löwik C
    PLoS One; 2011 Apr; 6(4):e19277. PubMed ID: 21544210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioluminescence and near-infrared fluorescence imaging for detection of metastatic bone tumors.
    Lim W; Kim B; Jo G; Yang DH; Park MH; Hyun H
    Lasers Med Sci; 2020 Feb; 35(1):115-120. PubMed ID: 31154597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A luciferin analogue generating near-infrared bioluminescence achieves highly sensitive deep-tissue imaging.
    Kuchimaru T; Iwano S; Kiyama M; Mitsumata S; Kadonosono T; Niwa H; Maki S; Kizaka-Kondoh S
    Nat Commun; 2016 Jun; 7():11856. PubMed ID: 27297211
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Self-illuminating NIR-II bioluminescence imaging probe based on silver sulfide quantum dots.
    Afshari MJ; Li C; Zeng J; Cui J; Wu S; Gao M
    ACS Nano; 2022 Oct; 16(10):16824-16832. PubMed ID: 36178795
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-illuminating quantum dot conjugates for in vivo imaging.
    So MK; Xu C; Loening AM; Gambhir SS; Rao J
    Nat Biotechnol; 2006 Mar; 24(3):339-43. PubMed ID: 16501578
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioluminescence Resonance Energy Transfer (BRET)-coupled Annexin V-functionalized Quantum Dots for Near-Infrared Optical Detection of Apoptotic Cells.
    Tsuboi S; Jin T
    Chembiochem; 2017 Nov; 18(22):2231-2235. PubMed ID: 28901721
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Luciferase expression and bioluminescence does not affect tumor cell growth in vitro or in vivo.
    Tiffen JC; Bailey CG; Ng C; Rasko JE; Holst J
    Mol Cancer; 2010 Nov; 9():299. PubMed ID: 21092230
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.