These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
276 related articles for article (PubMed ID: 31025051)
1. Ablation of Stabilin-1 Enhances Bone-Resorbing Activity in Osteoclasts In Vitro. Kim SY; Lee EH; Park SY; Choi H; Koh JT; Park EK; Kim IS; Kim JE Calcif Tissue Int; 2019 Aug; 105(2):205-214. PubMed ID: 31025051 [TBL] [Abstract][Full Text] [Related]
2. IL-1 plays an important role in the bone metabolism under physiological conditions. Lee YM; Fujikado N; Manaka H; Yasuda H; Iwakura Y Int Immunol; 2010 Oct; 22(10):805-16. PubMed ID: 20679512 [TBL] [Abstract][Full Text] [Related]
3. Targeting of Scavenger Receptors Stabilin-1 and Stabilin-2 Ameliorates Atherosclerosis by a Plasma Proteome Switch Mediating Monocyte/Macrophage Suppression. Manta CP; Leibing T; Friedrich M; Nolte H; Adrian M; Schledzewski K; Krzistetzko J; Kirkamm C; David Schmid C; Xi Y; Stojanovic A; Tonack S; de la Torre C; Hammad S; Offermanns S; Krüger M; Cerwenka A; Platten M; Goerdt S; Géraud C Circulation; 2022 Dec; 146(23):1783-1799. PubMed ID: 36325910 [TBL] [Abstract][Full Text] [Related]
4. Urokinase plasminogen activator receptor affects bone homeostasis by regulating osteoblast and osteoclast function. Furlan F; Galbiati C; Jorgensen NR; Jensen JE; Mrak E; Rubinacci A; Talotta F; Verde P; Blasi F J Bone Miner Res; 2007 Sep; 22(9):1387-96. PubMed ID: 17539736 [TBL] [Abstract][Full Text] [Related]
5. Streptococcus gordonii induces bone resorption by increasing osteoclast differentiation and reducing osteoblast differentiation. Park OJ; Kim J; Kim HY; Kwon Y; Yun CH; Han SH Microb Pathog; 2019 Jan; 126():218-223. PubMed ID: 30414445 [TBL] [Abstract][Full Text] [Related]
6. Hematopoietic Stabilin-1 deficiency does not influence atherosclerosis susceptibility in LDL receptor knockout mice. Nahon JE; Hoekstra M; van Hulst S; Manta C; Goerdt S; Geerling JJ; Géraud C; Van Eck M Atherosclerosis; 2019 Feb; 281():47-55. PubMed ID: 30658191 [TBL] [Abstract][Full Text] [Related]
7. Arecoline suppresses RANKL-induced osteoclast differentiation in vitro and attenuates LPS-induced bone loss in vivo. Liu FL; Chen CL; Lai CC; Lee CC; Chang DM Phytomedicine; 2020 Apr; 69():153195. PubMed ID: 32200293 [TBL] [Abstract][Full Text] [Related]
8. Inhibition of osteoclast differentiation and collagen antibody-induced arthritis by CTHRC1. Jin YR; Stohn JP; Wang Q; Nagano K; Baron R; Bouxsein ML; Rosen CJ; Adarichev VA; Lindner V Bone; 2017 Apr; 97():153-167. PubMed ID: 28115279 [TBL] [Abstract][Full Text] [Related]
9. The Rho-GEF Kalirin regulates bone mass and the function of osteoblasts and osteoclasts. Huang S; Eleniste PP; Wayakanon K; Mandela P; Eipper BA; Mains RE; Allen MR; Bruzzaniti A Bone; 2014 Mar; 60():235-45. PubMed ID: 24380811 [TBL] [Abstract][Full Text] [Related]
10. Serum CTX levels and histomorphometric analysis in Src versus RANKL knockout mice. Takeshita S; Fumoto T; Ito M; Ikeda K J Bone Miner Metab; 2018 May; 36(3):264-273. PubMed ID: 28589412 [TBL] [Abstract][Full Text] [Related]
11. CTRP3 acts as a negative regulator of osteoclastogenesis through AMPK-c-Fos-NFATc1 signaling in vitro and RANKL-induced calvarial bone destruction in vivo. Kim JY; Min JY; Baek JM; Ahn SJ; Jun HY; Yoon KH; Choi MK; Lee MS; Oh J Bone; 2015 Oct; 79():242-51. PubMed ID: 26103094 [TBL] [Abstract][Full Text] [Related]
12. The role of miR-150 regulates bone cell differentiation and function. Moussa FM; Cook BP; Sondag GR; DeSanto M; Obri MS; McDermott SE; Safadi FF Bone; 2021 Apr; 145():115470. PubMed ID: 32526406 [TBL] [Abstract][Full Text] [Related]
13. Proteinase-activated receptor-2 is required for normal osteoblast and osteoclast differentiation during skeletal growth and repair. Georgy SR; Pagel CN; Ghasem-Zadeh A; Zebaze RM; Pike RN; Sims NA; Mackie EJ Bone; 2012 Mar; 50(3):704-12. PubMed ID: 22173052 [TBL] [Abstract][Full Text] [Related]
14. A comparison of osteoclast-rich and osteoclast-poor osteopetrosis in adult mice sheds light on the role of the osteoclast in coupling bone resorption and bone formation. Thudium CS; Moscatelli I; Flores C; Thomsen JS; Brüel A; Gudmann NS; Hauge EM; Karsdal MA; Richter J; Henriksen K Calcif Tissue Int; 2014 Jul; 95(1):83-93. PubMed ID: 24838599 [TBL] [Abstract][Full Text] [Related]
15. The Multifarious Functions of Leukotrienes in Bone Metabolism. Amadeu de Oliveira F; Tokuhara CK; Veeriah V; Domezi JP; Santesso MR; Cestari TM; Ventura TMO; Matos AA; Dionísio T; Ferreira MR; Ortiz RC; Duarte MAH; Buzalaf MAR; Ponce JB; Sorgi CA; Faccioli LH; Buzalaf CP; de Oliveira RC J Bone Miner Res; 2023 Aug; 38(8):1135-1153. PubMed ID: 37314430 [TBL] [Abstract][Full Text] [Related]
16. Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand. Udagawa N; Takahashi N; Jimi E; Matsuzaki K; Tsurukai T; Itoh K; Nakagawa N; Yasuda H; Goto M; Tsuda E; Higashio K; Gillespie MT; Martin TJ; Suda T Bone; 1999 Nov; 25(5):517-23. PubMed ID: 10574571 [TBL] [Abstract][Full Text] [Related]
17. Role of CX3CL1/fractalkine in osteoclast differentiation and bone resorption. Koizumi K; Saitoh Y; Minami T; Takeno N; Tsuneyama K; Miyahara T; Nakayama T; Sakurai H; Takano Y; Nishimura M; Imai T; Yoshie O; Saiki I J Immunol; 2009 Dec; 183(12):7825-31. PubMed ID: 19923448 [TBL] [Abstract][Full Text] [Related]
18. Poligoni Multiflori Radix enhances osteoblast formation and reduces osteoclast differentiation. Han SY; Lee KH; Kim YK Int J Mol Med; 2018 Jul; 42(1):331-345. PubMed ID: 29620250 [TBL] [Abstract][Full Text] [Related]
19. Osteoblast-Specific Loss of IGF1R Signaling Results in Impaired Endochondral Bone Formation During Fracture Healing. Wang T; Wang Y; Menendez A; Fong C; Babey M; Tahimic CG; Cheng Z; Li A; Chang W; Bikle DD J Bone Miner Res; 2015 Sep; 30(9):1572-84. PubMed ID: 25801198 [TBL] [Abstract][Full Text] [Related]
20. Biglycan deficiency increases osteoclast differentiation and activity due to defective osteoblasts. Bi Y; Nielsen KL; Kilts TM; Yoon A; A Karsdal M; Wimer HF; Greenfield EM; Heegaard AM; Young MF Bone; 2006 Jun; 38(6):778-86. PubMed ID: 16364709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]