BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31025135)

  • 21. Effects of oxygen limitation on xylose fermentation, intracellular metabolites, and key enzymes of Neurospora crassa AS3.1602.
    Zhang Z; Qu Y; Zhang X; Lin J
    Appl Biochem Biotechnol; 2008 Mar; 145(1-3):39-51. PubMed ID: 18425610
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Expression of protein engineered NADP+-dependent xylitol dehydrogenase increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Matsushika A; Watanabe S; Kodaki T; Makino K; Inoue H; Murakami K; Takimura O; Sawayama S
    Appl Microbiol Biotechnol; 2008 Nov; 81(2):243-55. PubMed ID: 18751695
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Engineering a synthetic anaerobic respiration for reduction of xylose to xylitol using NADH output of glucose catabolism by Escherichia coli AI21.
    Iverson A; Garza E; Manow R; Wang J; Gao Y; Grayburn S; Zhou S
    BMC Syst Biol; 2016 Apr; 10():31. PubMed ID: 27083875
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Photosynthetic Reduction of Xylose to Xylitol Using Cyanobacteria.
    Fan ES; Lu KW; Wen RC; Shen CR
    Biotechnol J; 2020 Jun; 15(6):e1900354. PubMed ID: 32388928
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The expression of a Pichia stipitis xylose reductase mutant with higher K(M) for NADPH increases ethanol production from xylose in recombinant Saccharomyces cerevisiae.
    Jeppsson M; Bengtsson O; Franke K; Lee H; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Biotechnol Bioeng; 2006 Mar; 93(4):665-73. PubMed ID: 16372361
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification and characterization of D-xylose reductase involved in pentose catabolism of the zygomycetous fungus Rhizomucor pusillus.
    Komeda H; Yamasaki-Yashiki S; Hoshino K; Asano Y
    J Biosci Bioeng; 2015 Jan; 119(1):57-64. PubMed ID: 25041710
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cloning, expression, and characterization of xylose reductase with higher activity from Candida tropicalis.
    Zhang F; Qiao D; Xu H; Liao C; Li S; Cao Y
    J Microbiol; 2009 Jun; 47(3):351-7. PubMed ID: 19557353
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The yeast Scheffersomyces amazonensis is an efficient xylitol producer.
    Cadete RM; Melo-Cheab MA; Viana AL; Oliveira ES; Fonseca C; Rosa CA
    World J Microbiol Biotechnol; 2016 Dec; 32(12):207. PubMed ID: 27807756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. High activity of xylose reductase and xylitol dehydrogenase improves xylose fermentation by recombinant Saccharomyces cerevisiae.
    Karhumaa K; Fromanger R; Hahn-Hägerdal B; Gorwa-Grauslund MF
    Appl Microbiol Biotechnol; 2007 Jan; 73(5):1039-46. PubMed ID: 16977466
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhancement of α,ω-Dicarboxylic Acid Production by the Expression of Xylose Reductase for Refactoring Redox Cofactor Regeneration.
    Sathesh-Prabu C; Lee SK
    J Agric Food Chem; 2018 Apr; 66(13):3489-3497. PubMed ID: 29537267
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of NADH-preferring xylose reductase expression on ethanol production from xylose in xylose-metabolizing recombinant Saccharomyces cerevisiae.
    Lee SH; Kodaki T; Park YC; Seo JH
    J Biotechnol; 2012 Apr; 158(4):184-91. PubMed ID: 21699927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Xylitol production from corn cob hemicellulosic hydrolysate by Candida sp].
    Fang XN; Huang W; Xia LM
    Sheng Wu Gong Cheng Xue Bao; 2004 Mar; 20(2):295-8. PubMed ID: 15969126
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improvement of NADPH-dependent bioconversion by transcriptome-based molecular breeding.
    Hibi M; Yukitomo H; Ito M; Mori H
    Appl Environ Microbiol; 2007 Dec; 73(23):7657-63. PubMed ID: 17921263
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Xylose reductase activity of Candida guilliermondii during xylitol production by fed-batch fermentation: selection of process variables.
    Rodrigues DC; Da Silva SS; Almeida E Silva JB; Vitolo M
    Appl Biochem Biotechnol; 2002; 98-100():875-83. PubMed ID: 12018309
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Xylitol production by genetically modified industrial strain of Saccharomyces cerevisiae using glycerol as co-substrate.
    Kogje AB; Ghosalkar A
    J Ind Microbiol Biotechnol; 2017 Jun; 44(6):961-971. PubMed ID: 28188449
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of hexose and pentose in pre-cultivation of Candida guilliermondii on the key enzymes for xylitol production in sugarcane hemicellulosic hydrolysate.
    de Arruda PV; Rodrigues Rde C; da Silva DD; Felipe Md
    Biodegradation; 2011 Jul; 22(4):815-22. PubMed ID: 20683763
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced xylose fermentation by engineered yeast expressing NADH oxidase through high cell density inoculums.
    Zhang GC; Turner TL; Jin YS
    J Ind Microbiol Biotechnol; 2017 Mar; 44(3):387-395. PubMed ID: 28070721
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of acetic acid present in bagasse hydrolysate on the activities of xylose reductase and xylitol dehydrogenase in Candida guilliermondii.
    Lima LH; das Graças de Almeida Felipe M; Vitolo M; Torres FA
    Appl Microbiol Biotechnol; 2004 Nov; 65(6):734-8. PubMed ID: 15107950
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Anaerobic obligatory xylitol production in Escherichia coli strains devoid of native fermentation pathways.
    Akinterinwa O; Cirino PC
    Appl Environ Microbiol; 2011 Jan; 77(2):706-9. PubMed ID: 21097593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars.
    Nair NU; Zhao H
    Metab Eng; 2010 Sep; 12(5):462-8. PubMed ID: 20447465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.