These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

79 related articles for article (PubMed ID: 31025574)

  • 1. The impact of
    Alkowni R; Jodeh S; Hamed R; Samhan S; Daraghmeh H
    Int J Phytoremediation; 2019; 21(10):944-952. PubMed ID: 31025574
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant growth-promoting bacteria facilitate the growth of barley and oats in salt-impacted soil: implications for phytoremediation of saline soils.
    Chang P; Gerhardt KE; Huang XD; Yu XM; Glick BR; Gerwing PD; Greenberg BM
    Int J Phytoremediation; 2014; 16(7-12):1133-47. PubMed ID: 24933907
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of plant growth promoting bacterium; Pseudomonas putida UW4 inoculation on phytoremediation efficacy of monoculture and mixed culture of selected plant species for PAH and lead spiked soils.
    Afegbua SL; Batty LC
    Int J Phytoremediation; 2019; 21(3):200-208. PubMed ID: 30656952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interactions between Pseudomonas putida UW4 and Gigaspora rosea BEG9 and their consequences for the growth of cucumber under salt-stress conditions.
    Gamalero E; Berta G; Massa N; Glick BR; Lingua G
    J Appl Microbiol; 2010 Jan; 108(1):236-45. PubMed ID: 19566717
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of plant growth-promoting bacteria-responsive proteins in cucumber roots under hypoxic stress using a proteomic approach.
    Li J; McConkey BJ; Cheng Z; Guo S; Glick BR
    J Proteomics; 2013 Jun; 84():119-31. PubMed ID: 23568019
    [TBL] [Abstract][Full Text] [Related]  

  • 6. 1-Aminocyclopropane-1-Carboxylate: A Novel and Strong Chemoattractant for the Plant Beneficial Rhizobacterium
    Li T; Zhang J; Shen C; Li H; Qiu L
    Mol Plant Microbe Interact; 2019 Jun; 32(6):750-759. PubMed ID: 30640574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of bacterial proteins mediating the interactions between Pseudomonas putida UW4 and Brassica napus (Canola).
    Cheng Z; Duan J; Hao Y; McConkey BJ; Glick BR
    Mol Plant Microbe Interact; 2009 Jun; 22(6):686-94. PubMed ID: 19445593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic interactions between the ACC deaminase-producing bacterium Pseudomonas putida UW4 and the AM fungus Gigaspora rosea positively affect cucumber plant growth.
    Gamalero E; Berta G; Massa N; Glick BR; Lingua G
    FEMS Microbiol Ecol; 2008 Jun; 64(3):459-67. PubMed ID: 18400004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioaccumulation of nickel by E. sativa and role of plant growth promoting rhizobacteria (PGPRs) under nickel stress.
    Kamran MA; Eqani SAMAS; Bibi S; Xu RK; Amna ; Monis MFH; Katsoyiannis A; Bokhari H; Chaudhary HJ
    Ecotoxicol Environ Saf; 2016 Apr; 126():256-263. PubMed ID: 26773835
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt.
    Cheng Z; Park E; Glick BR
    Can J Microbiol; 2007 Jul; 53(7):912-8. PubMed ID: 17898846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synergistic effect of Pseudomonas putida and endomycorrhizal inoculation on the physiological response of onion (Allium cepa L.) to saline conditions.
    El-Aal MSA; Farag HRM; Elbar OHA; Zayed MS; Khalifa GS; Abdellatif YMR
    Sci Rep; 2024 Sep; 14(1):21373. PubMed ID: 39266608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interactive effects of salinity and phosphorus availability on growth, water relations, nutritional status and photosynthetic activity of barley (Hordeum vulgare L.).
    Talbi Zribi O; Abdelly C; Debez A
    Plant Biol (Stuttg); 2011 Nov; 13(6):872-80. PubMed ID: 21974779
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effects of brackish water irrigation on soil enzyme activity, soil CO2 flux and organic matter decomposition].
    Zhang QQ; Wang F; Liu T; Chu GX
    Ying Yong Sheng Tai Xue Bao; 2015 Sep; 26(9):2743-50. PubMed ID: 26785557
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a model estimating root length density from root impacts on a soil profile in pearl millet (Pennisetum glaucum (L.) R. Br). Application to measure root system response to water stress in field conditions.
    Faye A; Sine B; Chopart JL; Grondin A; Lucas M; Diedhiou AG; Gantet P; Cournac L; Min D; Audebert A; Kane A; Laplaze L
    PLoS One; 2019; 14(7):e0214182. PubMed ID: 31329591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation, phytoprotection and phytoremediation of phenanthrene by endophyte Pseudomonas putida, PD1.
    Khan Z; Roman D; Kintz T; delas Alas M; Yap R; Doty S
    Environ Sci Technol; 2014 Oct; 48(20):12221-8. PubMed ID: 25275224
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of the Arabidopsis vacuolar H⁺-pyrophosphatase gene (AVP1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field.
    Schilling RK; Marschner P; Shavrukov Y; Berger B; Tester M; Roy SJ; Plett DC
    Plant Biotechnol J; 2014 Apr; 12(3):378-86. PubMed ID: 24261956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comprehensive tissue-specific proteome analysis of drought stress responses in Pennisetum glaucum (L.) R. Br. (Pearl millet).
    Ghatak A; Chaturvedi P; Nagler M; Roustan V; Lyon D; Bachmann G; Postl W; Schröfl A; Desai N; Varshney RK; Weckwerth W
    J Proteomics; 2016 Jun; 143():122-135. PubMed ID: 26944736
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physiological and biochemical responses of the forage legume Trifolium alexandrinum to different saline conditions and nitrogen levels.
    Zouhaier B; Mariem M; Mokded R; Rouached A; Alsane K; Chedly A; Abderrazek S; Abdallah A
    J Plant Res; 2016 May; 129(3):423-34. PubMed ID: 26818949
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitigation of salt stress in white clover (Trifolium repens) by Azospirillum brasilense and its inoculation effect.
    Khalid M; Bilal M; Hassani D; Iqbal HMN; Wang H; Huang D
    Bot Stud; 2017 Dec; 58(1):5. PubMed ID: 28510188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site.
    Farwell AJ; Vesely S; Nero V; Rodriguez H; McCormack K; Shah S; Dixon DG; Glick BR
    Environ Pollut; 2007 Jun; 147(3):540-5. PubMed ID: 17141927
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.