These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31025850)

  • 1. High-Throughput Screening for Advanced Thermoelectric Materials: Diamond-Like ABX
    Li R; Li X; Xi L; Yang J; Singh DJ; Zhang W
    ACS Appl Mater Interfaces; 2019 Jul; 11(28):24859-24866. PubMed ID: 31025850
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of High-Performance Thermoelectric Chalcogenides through Reliable High-Throughput Material Screening.
    Xi L; Pan S; Li X; Xu Y; Ni J; Sun X; Yang J; Luo J; Xi J; Zhu W; Li X; Jiang D; Dronskowski R; Shi X; Snyder GJ; Zhang W
    J Am Chem Soc; 2018 Aug; 140(34):10785-10793. PubMed ID: 30086638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermoelectric and phonon transport properties of two-dimensional IV-VI compounds.
    Shafique A; Shin YH
    Sci Rep; 2017 Mar; 7(1):506. PubMed ID: 28360412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Intrinsically High Thermoelectric Performance in AgInSe
    Qiu P; Qin Y; Zhang Q; Li R; Yang J; Song Q; Tang Y; Bai S; Shi X; Chen L
    Adv Sci (Weinh); 2018 Mar; 5(3):1700727. PubMed ID: 29593972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Screening Promising Thermoelectric Materials in Binary Chalcogenides through High-Throughput Computations.
    Jia T; Feng Z; Guo S; Zhang X; Zhang Y
    ACS Appl Mater Interfaces; 2020 Mar; 12(10):11852-11864. PubMed ID: 32069390
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction for electronic, vibrational and thermoelectric properties of chalcopyrite AgX(X=In,Ga)Te
    Yang J; Fan Q; Cheng X
    R Soc Open Sci; 2017 Oct; 4(10):170750. PubMed ID: 29134079
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-efficient thermoelectric materials: The case of orthorhombic IV-VI compounds.
    Ding G; Gao G; Yao K
    Sci Rep; 2015 Jun; 5():9567. PubMed ID: 26045338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anisotropic thermoelectric properties of Weyl semimetal NbX (X = P and As): a potential thermoelectric material.
    Zhou Y; Zhao YQ; Zeng ZY; Chen XR; Geng HY
    Phys Chem Chem Phys; 2019 Jul; 21(27):15167-15176. PubMed ID: 31246206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chalcopyrite ZnSnSb
    Nomura A; Choi S; Ishimaru M; Kosuga A; Chasapis T; Ohno S; Snyder GJ; Ohishi Y; Muta H; Yamanaka S; Kurosaki K
    ACS Appl Mater Interfaces; 2018 Dec; 10(50):43682-43690. PubMed ID: 30479127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Band Structures and Transport Properties of High-Performance Half-Heusler Thermoelectric Materials by First Principles.
    Fang T; Zhao X; Zhu T
    Materials (Basel); 2018 May; 11(5):. PubMed ID: 29783759
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermoelectric properties and electronic structure of the Zintl phase Sr₅In₂Sb₆ and the Ca(5-x)Sr(x)In₂Sb₆ solid solution.
    Zevalkink A; Chanakian S; Aydemir U; Ormeci A; Pomrehn G; Bux S; Fleurial JP; Snyder GJ
    J Phys Condens Matter; 2015 Jan; 27(1):015801. PubMed ID: 25479002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Materials informatics platform with three dimensional structures, workflow and thermoelectric applications.
    Yao M; Wang Y; Li X; Sheng Y; Huo H; Xi L; Yang J; Zhang W
    Sci Data; 2021 Sep; 8(1):236. PubMed ID: 34493728
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High thermoelectric performance via hierarchical compositionally alloyed nanostructures.
    Zhao LD; Hao S; Lo SH; Wu CI; Zhou X; Lee Y; Li H; Biswas K; Hogan TP; Uher C; Wolverton C; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2013 May; 135(19):7364-70. PubMed ID: 23647245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The relationship between the electronic structure and thermoelectric properties of Zintl compounds M2Zn5As4 (M = K, Rb).
    Yang G; Yang J; Yan Y; Wang Y
    Phys Chem Chem Phys; 2014 Mar; 16(12):5661-6. PubMed ID: 24522347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The influence of surface functionalization on thermal transport and thermoelectric properties of MXene monolayers.
    Sarikurt S; Çakır D; Keçeli M; Sevik C
    Nanoscale; 2018 May; 10(18):8859-8868. PubMed ID: 29714796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-induced conduction band convergence in the thermoelectric ternary chalcogenide CuBiS
    Alsaleh NM; Shoko E; Schwingenschlögl U
    Phys Chem Chem Phys; 2019 Jan; 21(2):662-673. PubMed ID: 30542692
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Full-scale computation for all the thermoelectric property parameters of half-Heusler compounds.
    Hong AJ; Li L; He R; Gong JJ; Yan ZB; Wang KF; Liu JM; Ren ZF
    Sci Rep; 2016 Mar; 6():22778. PubMed ID: 26947395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High ZT in p-type (PbTe)1-2x(PbSe)x(PbS)x thermoelectric materials.
    Korkosz RJ; Chasapis TC; Lo SH; Doak JW; Kim YJ; Wu CI; Hatzikraniotis E; Hogan TP; Seidman DN; Wolverton C; Dravid VP; Kanatzidis MG
    J Am Chem Soc; 2014 Feb; 136(8):3225-37. PubMed ID: 24533466
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Designing chemical analogs to PbTe with intrinsic high band degeneracy and low lattice thermal conductivity.
    He J; Xia Y; Naghavi SS; Ozoliņš V; Wolverton C
    Nat Commun; 2019 Feb; 10(1):719. PubMed ID: 30755609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.