These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 31026008)

  • 1. Correction: A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2019 May; 19(10):1887. PubMed ID: 31026008
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A flow focusing microfluidic device with an integrated Coulter particle counter for production, counting and size characterization of monodisperse microbubbles.
    Rickel JMR; Dixon AJ; Klibanov AL; Hossack JA
    Lab Chip; 2018 Aug; 18(17):2653-2664. PubMed ID: 30070301
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation of hydrodynamic focusing in a microfluidic coulter counter device.
    Zhang M; Lian Y; Harnett C; Brehob E
    J Biomech Eng; 2012 Aug; 134(8):081001. PubMed ID: 22938354
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional hydrodynamic focusing in a microfluidic Coulter counter.
    Scott R; Sethu P; Harnett CK
    Rev Sci Instrum; 2008 Apr; 79(4):046104. PubMed ID: 18447562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Closed-loop feedback control of microbubble diameter from a flow-focusing microfluidic device.
    Xie Y; Dixon AJ; Rickel JMR; Klibanov AL; Hossack JA
    Biomicrofluidics; 2020 May; 14(3):034101. PubMed ID: 32454925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrical cell counting process characterization in a microfluidic impedance cytometer.
    Hassan U; Bashir R
    Biomed Microdevices; 2014 Oct; 16(5):697-704. PubMed ID: 24898912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D numerical simulation of a Coulter counter array with analysis of electrokinetic forces.
    Guo J; Pui TS; Rahman AR; Kang Y
    Electrophoresis; 2013 Feb; 34(3):417-24. PubMed ID: 23161097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel technology: microfluidic devices for microbubble ultrasound contrast agent generation.
    Lin H; Chen J; Chen C
    Med Biol Eng Comput; 2016 Sep; 54(9):1317-30. PubMed ID: 27016369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of monodisperse microbubbles using an integrated embedded capillary T-junction with electrohydrodynamic focusing.
    Parhizkar M; Stride E; Edirisinghe M
    Lab Chip; 2014 Jul; 14(14):2437-46. PubMed ID: 24837066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Recombinant protein-stabilized monodisperse microbubbles with tunable size using a valve-based microfluidic device.
    Angilè FE; Vargo KB; Sehgal CM; Hammer DA; Lee D
    Langmuir; 2014 Oct; 30(42):12610-8. PubMed ID: 25265041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Micropipette-Based Microfluidic Device for Monodisperse Microbubbles Generation.
    Toshiyuki Matsumi C; José da Silva W; Kurt Schneider F; Miguel Maia J; E M Morales R; Duarte Araújo Filho W
    Micromachines (Basel); 2018 Aug; 9(8):. PubMed ID: 30424320
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Long-term stability by lipid coating monodisperse microbubbles formed by a flow-focusing device.
    Talu E; Lozano MM; Powell RL; Dayton PA; Longo ML
    Langmuir; 2006 Nov; 22(23):9487-90. PubMed ID: 17073468
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stability of Monodisperse Phospholipid-Coated Microbubbles Formed by Flow-Focusing at High Production Rates.
    Segers T; de Rond L; de Jong N; Borden M; Versluis M
    Langmuir; 2016 Apr; 32(16):3937-44. PubMed ID: 27006083
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Microfluidic Passive Pumping Coulter Counter.
    McPherson AL; Walker GM
    Microfluid Nanofluidics; 2010 Oct; 9(4-5):897-904. PubMed ID: 23930109
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A microfluidic Coulter counting device for metal wear detection in lubrication oil.
    Murali S; Jagtiani AV; Xia X; Carletta J; Zhe J
    Rev Sci Instrum; 2009 Jan; 80(1):016105. PubMed ID: 19191466
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flow metering characterization within an electrical cell counting microfluidic device.
    Hassan U; Watkins NN; Edwards C; Bashir R
    Lab Chip; 2014 Apr; 14(8):1469-76. PubMed ID: 24615248
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Universal Equations for the Coalescence Probability and Long-Term Size Stability of Phospholipid-Coated Monodisperse Microbubbles Formed by Flow Focusing.
    Segers T; Lohse D; Versluis M; Frinking P
    Langmuir; 2017 Oct; 33(39):10329-10339. PubMed ID: 28872315
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-throughput and sensitive particle counting by a novel microfluidic differential resistive pulse sensor with multidetecting channels and a common reference channel.
    Song Y; Yang J; Pan X; Li D
    Electrophoresis; 2015 Feb; 36(4):495-501. PubMed ID: 25363672
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-speed particle detection in a micro-Coulter counter with two-dimensional adjustable aperture.
    Rodriguez-Trujillo R; Castillo-Fernandez O; Garrido M; Arundell M; Valencia A; Gomila G
    Biosens Bioelectron; 2008 Oct; 24(2):290-6. PubMed ID: 18511254
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Positively Charged Lipid Shell Microbubbles with Tunable Resistive Pulse Sensing (TRPS) Method: A Technical Note.
    Manta S; Delalande A; Bessodes M; Bureau MF; Scherman D; Pichon C; Mignet N
    Ultrasound Med Biol; 2016 Feb; 42(2):624-30. PubMed ID: 26653937
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.