These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31026158)

  • 1. Toward Accurate Hydrogen Bonds by Scalable Quantum Monte Carlo.
    Dubecký M; Jurečka P; Mitas L; Ditte M; Fanta R
    J Chem Theory Comput; 2019 Jun; 15(6):3552-3557. PubMed ID: 31026158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bias cancellation in one-determinant fixed-node diffusion Monte Carlo: Insights from fermionic occupation numbers.
    Dubecký M
    Phys Rev E; 2017 Mar; 95(3-1):033308. PubMed ID: 28415179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Accuracy of Noncovalent Interactions Involving
    Kolesár V; Dubecký M
    J Chem Theory Comput; 2023 Feb; 19(4):1170-1176. PubMed ID: 36751996
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Noncovalent Interactions by Fixed-Node Diffusion Monte Carlo: Convergence of Nodes and Energy Differences vs Gaussian Basis-Set Size.
    Dubecký M
    J Chem Theory Comput; 2017 Aug; 13(8):3626-3635. PubMed ID: 28686834
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Weak intermolecular interactions calculated with diffusion Monte Carlo.
    Diedrich C; Lüchow A; Grimme S
    J Chem Phys; 2005 Nov; 123(18):184106. PubMed ID: 16292898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fractional Charge by Fixed-Node Diffusion Monte Carlo Method.
    Ditte M; Dubecký M
    Phys Rev Lett; 2019 Oct; 123(15):156402. PubMed ID: 31702309
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantum Monte Carlo for noncovalent interactions: an efficient protocol attaining benchmark accuracy.
    Dubecký M; Derian R; Jurečka P; Mitas L; Hobza P; Otyepka M
    Phys Chem Chem Phys; 2014 Oct; 16(38):20915-23. PubMed ID: 25170978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum Monte Carlo Methods Describe Noncovalent Interactions with Subchemical Accuracy.
    Dubecký M; Jurečka P; Derian R; Hobza P; Otyepka M; Mitas L
    J Chem Theory Comput; 2013 Oct; 9(10):4287-92. PubMed ID: 26589147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dissecting the Hydrogen Bond: A Quantum Monte Carlo Approach.
    Sterpone F; Spanu L; Ferraro L; Sorella S; Guidoni L
    J Chem Theory Comput; 2008 Sep; 4(9):1428-34. PubMed ID: 26621429
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Toward the exact solution of the electronic Schrödinger equation for noncovalent molecular interactions: worldwide distributed quantum monte carlo calculations.
    Korth M; Lüchow A; Grimme S
    J Phys Chem A; 2008 Mar; 112(10):2104-9. PubMed ID: 18201073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Approaching chemical accuracy with quantum Monte Carlo.
    Petruzielo FR; Toulouse J; Umrigar CJ
    J Chem Phys; 2012 Mar; 136(12):124116. PubMed ID: 22462844
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Noncovalent Interactions by the Quantum Monte Carlo Method: Strong Influence of Isotropic Jastrow Cutoff Radii.
    Fanta R; Dubecký M
    J Chem Theory Comput; 2021 Jul; 17(7):4242-4249. PubMed ID: 34169721
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The lithium-thiophene riddle revisited.
    Korth M; Grimme S; Towler MD
    J Phys Chem A; 2011 Oct; 115(42):11734-9. PubMed ID: 21877699
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods.
    Dubecký M; Karlický F; Minárik S; Mitas L
    J Chem Phys; 2020 Nov; 153(18):184706. PubMed ID: 33187427
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusion Monte Carlo evaluation of disiloxane linearisation barrier.
    Hanindriyo AT; Yadav AKS; Ichibha T; Maezono R; Nakano K; Hongo K
    Phys Chem Chem Phys; 2022 Feb; 24(6):3761-3769. PubMed ID: 35080527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance of the Diffusion Quantum Monte Carlo Method with a Single-Slater-Jastrow Trial Wavefunction Using Natural Orbitals and Density Functional Theory Orbitals on Atomization Energies of the Gaussian-2 Set.
    Wang T; Zhou X; Wang F
    J Phys Chem A; 2019 May; 123(17):3809-3817. PubMed ID: 30950620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical accuracy from quantum Monte Carlo for the benzene dimer.
    Azadi S; Cohen RE
    J Chem Phys; 2015 Sep; 143(10):104301. PubMed ID: 26374029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multi-Jastrow trial wavefunctions for electronic structure calculations with quantum Monte Carlo.
    Bouabça T; Braïda B; Caffarel M
    J Chem Phys; 2010 Jul; 133(4):044111. PubMed ID: 20687637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fixed-Node Diffusion Quantum Monte Carlo Method on Dissociation Energies and Their Trends for R-X Bonds (R = Me, Et, i-Pr, t-Bu).
    Hou A; Zhou X; Wang T; Wang F
    J Phys Chem A; 2018 Jun; 122(22):5050-5057. PubMed ID: 29733211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular hydrogen adsorbed on benzene: Insights from a quantum Monte Carlo study.
    Beaudet TD; Casula M; Kim J; Sorella S; Martin RM
    J Chem Phys; 2008 Oct; 129(16):164711. PubMed ID: 19045302
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.