BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 31026297)

  • 21. A deep boosting based approach for capturing the sequence binding preferences of RNA-binding proteins from high-throughput CLIP-seq data.
    Li S; Dong F; Wu Y; Zhang S; Zhang C; Liu X; Jiang T; Zeng J
    Nucleic Acids Res; 2017 Aug; 45(14):e129. PubMed ID: 28575488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Deep-RBPPred: Predicting RNA binding proteins in the proteome scale based on deep learning.
    Zheng J; Zhang X; Zhao X; Tong X; Hong X; Xie J; Liu S
    Sci Rep; 2018 Oct; 8(1):15264. PubMed ID: 30323214
    [TBL] [Abstract][Full Text] [Related]  

  • 23. rBPDL:Predicting RNA-Binding Proteins Using Deep Learning.
    Niu M; Wu J; Zou Q; Liu Z; Xu L
    IEEE J Biomed Health Inform; 2021 Sep; 25(9):3668-3676. PubMed ID: 33780344
    [TBL] [Abstract][Full Text] [Related]  

  • 24. RBP-TSTL is a two-stage transfer learning framework for genome-scale prediction of RNA-binding proteins.
    Peng X; Wang X; Guo Y; Ge Z; Li F; Gao X; Song J
    Brief Bioinform; 2022 Jul; 23(4):. PubMed ID: 35649392
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Identification of high-confidence RNA regulatory elements by combinatorial classification of RNA-protein binding sites.
    Li YE; Xiao M; Shi B; Yang YT; Wang D; Wang F; Marcia M; Lu ZJ
    Genome Biol; 2017 Sep; 18(1):169. PubMed ID: 28886744
    [TBL] [Abstract][Full Text] [Related]  

  • 26. RNAProt: an efficient and feature-rich RNA binding protein binding site predictor.
    Uhl M; Tran VD; Heyl F; Backofen R
    Gigascience; 2021 Aug; 10(8):. PubMed ID: 34406415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. AC-Caps: Attention Based Capsule Network for Predicting RBP Binding Sites of LncRNA.
    Song J; Tian S; Yu L; Xing Y; Yang Q; Duan X; Dai Q
    Interdiscip Sci; 2020 Dec; 12(4):414-423. PubMed ID: 32572768
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of RBP binding sites on circRNAs using an LSTM-based deep sequence learning architecture.
    Wang Z; Lei X
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415289
    [TBL] [Abstract][Full Text] [Related]  

  • 29. CircSLNN: Identifying RBP-Binding Sites on circRNAs
    Ju Y; Yuan L; Yang Y; Zhao H
    Front Genet; 2019; 10():1184. PubMed ID: 31824574
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Multi-resBind: a residual network-based multi-label classifier for in vivo RNA binding prediction and preference visualization.
    Zhao S; Hamada M
    BMC Bioinformatics; 2021 Nov; 22(1):554. PubMed ID: 34781902
    [TBL] [Abstract][Full Text] [Related]  

  • 31. econvRBP: Improved ensemble convolutional neural networks for RNA binding protein prediction directly from sequence.
    Zhao Y; Du X
    Methods; 2020 Oct; 181-182():15-23. PubMed ID: 31513916
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Leveraging cross-link modification events in CLIP-seq for motif discovery.
    Bahrami-Samani E; Penalva LO; Smith AD; Uren PJ
    Nucleic Acids Res; 2015 Jan; 43(1):95-103. PubMed ID: 25505146
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Improved prediction of DNA and RNA binding proteins with deep learning models.
    Wu S; Guo JT
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38856168
    [TBL] [Abstract][Full Text] [Related]  

  • 34. mCarts: Genome-Wide Prediction of Clustered Sequence Motifs as Binding Sites for RNA-Binding Proteins.
    Weyn-Vanhentenryck SM; Zhang C
    Methods Mol Biol; 2016; 1421():215-26. PubMed ID: 26965268
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network.
    Wu H; Pan X; Yang Y; Shen HB
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34297803
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Matrix-screening reveals a vast potential for direct protein-protein interactions among RNA binding proteins.
    Lang B; Yang JS; Garriga-Canut M; Speroni S; Aschern M; Gili M; Hoffmann T; Tartaglia GG; Maurer SP
    Nucleic Acids Res; 2021 Jul; 49(12):6702-6721. PubMed ID: 34133714
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Convolutional neural network based on SMILES representation of compounds for detecting chemical motif.
    Hirohara M; Saito Y; Koda Y; Sato K; Sakakibara Y
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):526. PubMed ID: 30598075
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dissecting the expression relationships between RNA-binding proteins and their cognate targets in eukaryotic post-transcriptional regulatory networks.
    Nishtala S; Neelamraju Y; Janga SC
    Sci Rep; 2016 May; 6():25711. PubMed ID: 27161996
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Multimodal deep representation learning for protein interaction identification and protein family classification.
    Zhang D; Kabuka M
    BMC Bioinformatics; 2019 Dec; 20(Suppl 16):531. PubMed ID: 31787089
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prediction of clustered RNA-binding protein motif sites in the mammalian genome.
    Zhang C; Lee KY; Swanson MS; Darnell RB
    Nucleic Acids Res; 2013 Aug; 41(14):6793-807. PubMed ID: 23685613
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.