These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 31026447)

  • 1. Spectroscopic Evidence of Tertiary Structural Differences Between Insulin Molecules in Fibrils.
    Schack MM; Dahl K; Rades T; Groenning M; Carpenter JF
    J Pharm Sci; 2019 Sep; 108(9):2871-2879. PubMed ID: 31026447
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishing the link between fibril formation and Raman optical activity spectra of insulin.
    Kessler J; Yamamoto S; Bouř P
    Phys Chem Chem Phys; 2017 May; 19(21):13614-13621. PubMed ID: 28524190
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and composition of insulin fibril surfaces probed by TERS.
    Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK
    J Am Chem Soc; 2012 Aug; 134(32):13323-9. PubMed ID: 22813355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface characterization of insulin protofilaments and fibril polymorphs using tip-enhanced Raman spectroscopy (TERS).
    Kurouski D; Deckert-Gaudig T; Deckert V; Lednev IK
    Biophys J; 2014 Jan; 106(1):263-71. PubMed ID: 24411258
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring the structure and formation mechanism of amyloid fibrils by Raman spectroscopy: a review.
    Kurouski D; Van Duyne RP; Lednev IK
    Analyst; 2015 Aug; 140(15):4967-80. PubMed ID: 26042229
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Studies of the structure of insulin fibrils by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.
    Nielsen L; Frokjaer S; Carpenter JF; Brange J
    J Pharm Sci; 2001 Jan; 90(1):29-37. PubMed ID: 11064376
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural Organization of Insulin Fibrils Based on Polarized Raman Spectroscopy: Evaluation of Existing Models.
    Sereda V; Sawaya MR; Lednev IK
    J Am Chem Soc; 2015 Sep; 137(35):11312-20. PubMed ID: 26278047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the mechanism of insulin fibril formation with insulin mutants.
    Nielsen L; Frokjaer S; Brange J; Uversky VN; Fink AL
    Biochemistry; 2001 Jul; 40(28):8397-409. PubMed ID: 11444987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Resonance Raman spectroscopic measurements delineate the structural changes that occur during tau fibril formation.
    Ramachandran G; Milán-Garcés EA; Udgaonkar JB; Puranik M
    Biochemistry; 2014 Oct; 53(41):6550-65. PubMed ID: 25284680
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fibrillar beta-lactoglobulin gels: Part 1. Fibril formation and structure.
    Gosal WS; Clark AH; Ross-Murphy SB
    Biomacromolecules; 2004; 5(6):2408-19. PubMed ID: 15530058
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of mutations on the structure of insulin fibrils studied by Fourier transform infrared (FTIR) spectroscopy and electron microscopy.
    Garriques LN; Frokjaer S; Carpenter JF; Brange J
    J Pharm Sci; 2002 Dec; 91(12):2473-80. PubMed ID: 12434390
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glucagon fibril polymorphism reflects differences in protofilament backbone structure.
    Andersen CB; Hicks MR; Vetri V; Vandahl B; Rahbek-Nielsen H; Thøgersen H; Thøgersen IB; Enghild JJ; Serpell LC; Rischel C; Otzen DE
    J Mol Biol; 2010 Apr; 397(4):932-46. PubMed ID: 20156459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracking of nanoscale structural variations on a single amyloid fibril with tip-enhanced Raman scattering.
    Deckert-Gaudig T; Kämmer E; Deckert V
    J Biophotonics; 2012 Mar; 5(3):215-9. PubMed ID: 22271749
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatially resolved spectroscopic differentiation of hydrophilic and hydrophobic domains on individual insulin amyloid fibrils.
    Deckert-Gaudig T; Kurouski D; Hedegaard MA; Singh P; Lednev IK; Deckert V
    Sci Rep; 2016 Sep; 6():33575. PubMed ID: 27650589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Achieving cytochrome c fibril/aggregate control towards micro-platelets and micro-fibers by tuning pH and protein concentration: A combined morphological and spectroscopic analysis.
    Nucara A; Carbone M; Ripanti F; Manganiello R; Postorino P; Carbonaro M
    Int J Biol Macromol; 2019 Oct; 138():106-115. PubMed ID: 31295496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gallic acid, one of the components in many plant tissues, is a potential inhibitor for insulin amyloid fibril formation.
    Jayamani J; Shanmugam G
    Eur J Med Chem; 2014 Oct; 85():352-8. PubMed ID: 25105923
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and structural characterization of insulin prefibrilar oligomers using surface enhanced Raman spectroscopy.
    Kurouski D; Sorci M; Postiglione T; Belfort G; Lednev IK
    Biotechnol Prog; 2014; 30(2):488-95. PubMed ID: 24376182
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multimodal Spectroscopic Study of Amyloid Fibril Polymorphism.
    VandenAkker CC; Schleeger M; Bruinen AL; Deckert-Gaudig T; Velikov KP; Heeren RM; Deckert V; Bonn M; Koenderink GH
    J Phys Chem B; 2016 Sep; 120(34):8809-17. PubMed ID: 27487391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insulin structure and stability.
    Brange J; Langkjoer L
    Pharm Biotechnol; 1993; 5():315-50. PubMed ID: 8019699
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep UV Resonance Raman Spectroscopy for Characterizing Amyloid Aggregation.
    Handen JD; Lednev IK
    Methods Mol Biol; 2016; 1345():89-100. PubMed ID: 26453207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.