These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

285 related articles for article (PubMed ID: 31026496)

  • 21. The impact of tunnel mutations on enzymatic catalysis depends on the tunnel-substrate complementarity and the rate-limiting step.
    Kokkonen P; Slanska M; Dockalova V; Pinto GP; Sánchez-Carnerero EM; Damborsky J; Klán P; Prokop Z; Bednar D
    Comput Struct Biotechnol J; 2020; 18():805-813. PubMed ID: 32308927
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Fast approximative methods for study of ligand transport and rational design of improved enzymes for biotechnologies.
    Vavra O; Damborsky J; Bednar D
    Biotechnol Adv; 2022 Nov; 60():108009. PubMed ID: 35738509
    [TBL] [Abstract][Full Text] [Related]  

  • 23. [Computational analysis of structure-activity relationship of industrial enzymes].
    Chen Q; Li C; Zheng G; Yu H; Xu J
    Sheng Wu Gong Cheng Xue Bao; 2019 Oct; 35(10):1829-1842. PubMed ID: 31668032
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Software tools for identification, visualization and analysis of protein tunnels and channels.
    Brezovsky J; Chovancova E; Gora A; Pavelka A; Biedermannova L; Damborsky J
    Biotechnol Adv; 2013; 31(1):38-49. PubMed ID: 22349130
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Minimalist active-site redesign: teaching old enzymes new tricks.
    Toscano MD; Woycechowsky KJ; Hilvert D
    Angew Chem Int Ed Engl; 2007; 46(18):3212-36. PubMed ID: 17450624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural and catalytic effects of surface loop-helix transplantation within haloalkane dehalogenase family.
    Marek M; Chaloupkova R; Prudnikova T; Sato Y; Rezacova P; Nagata Y; Kuta Smatanova I; Damborsky J
    Comput Struct Biotechnol J; 2020; 18():1352-1362. PubMed ID: 32612758
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Strain improvement for fermentation and biocatalysis processes by genetic engineering technology.
    Chiang SJ
    J Ind Microbiol Biotechnol; 2004 Mar; 31(3):99-108. PubMed ID: 15112060
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Converting Enzymes into Tools of Industrial Importance.
    Prasad S; Roy I
    Recent Pat Biotechnol; 2018; 12(1):33-56. PubMed ID: 28606046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular signatures-based prediction of enzyme promiscuity.
    Carbonell P; Faulon JL
    Bioinformatics; 2010 Aug; 26(16):2012-9. PubMed ID: 20551137
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The design of protein-based catalysts using semisynthetic methods.
    Distefano MD; Kuang H; Qi D; Mazhary A
    Curr Opin Struct Biol; 1998 Aug; 8(4):459-65. PubMed ID: 9729737
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Engineered enzymes for improved organic synthesis.
    Hult K; Berglund P
    Curr Opin Biotechnol; 2003 Aug; 14(4):395-400. PubMed ID: 12943848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The state-of-the-art strategies of protein engineering for enzyme stabilization.
    Liu Q; Xun G; Feng Y
    Biotechnol Adv; 2019; 37(4):530-537. PubMed ID: 31138425
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Unraveling Entropic Rate Acceleration Induced by Solvent Dynamics in Membrane Enzymes.
    Kürten C; Syrén PO
    J Vis Exp; 2016 Jan; (107):e53168. PubMed ID: 26862836
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computational Study of Protein-Ligand Unbinding for Enzyme Engineering.
    Marques SM; Bednar D; Damborsky J
    Front Chem; 2018; 6():650. PubMed ID: 30671430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Engineering Rieske oxygenase activity one piece at a time.
    Brimberry M; Garcia AA; Liu J; Tian J; Bridwell-Rabb J
    Curr Opin Chem Biol; 2023 Feb; 72():102227. PubMed ID: 36410250
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Unusual commonality in active site structural features of substrate promiscuous and specialist enzymes.
    Thakur D; Pandit SB
    J Struct Biol; 2022 Mar; 214(1):107835. PubMed ID: 35104611
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Catalytic promiscuity in biocatalysis: using old enzymes to form new bonds and follow new pathways.
    Bornscheuer UT; Kazlauskas RJ
    Angew Chem Int Ed Engl; 2004 Nov; 43(45):6032-40. PubMed ID: 15523680
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Conformational diversity and ligand tunnels of mammalian cytochrome P450s.
    Yu X; Cojocaru V; Wade RC
    Biotechnol Appl Biochem; 2013; 60(1):134-45. PubMed ID: 23587001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Including ligand-induced protein flexibility into protein tunnel prediction.
    Kingsley LJ; Lill MA
    J Comput Chem; 2014 Sep; 35(24):1748-56. PubMed ID: 25043499
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Design of biomimetic catalysts by molecular imprinting in synthetic polymers: the role of transition state stabilization.
    Wulff G; Liu J
    Acc Chem Res; 2012 Feb; 45(2):239-47. PubMed ID: 21967389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.