These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 31026562)

  • 1. Tone frequency representation beyond the tonotopic map: Cross-correlation between ongoing activity in the rat auditory cortex.
    Wake N; Shiramatsu TI; Takahashi H
    Neuroscience; 2019 Jun; 409():35-42. PubMed ID: 31026562
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tonotopic and Field-Specific Representation of Long-Lasting Sustained Activity in Rat Auditory Cortex.
    Shiramatsu TI; Noda T; Akutsu K; Takahashi H
    Front Neural Circuits; 2016; 10():59. PubMed ID: 27559309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Layer-specific representation of long-lasting sustained activity in the rat auditory cortex.
    Shiramatsu TI; Ibayashi K; Takahashi H
    Neuroscience; 2019 Jun; 408():91-104. PubMed ID: 30978381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sound frequency representation in primary auditory cortex is level tolerant for moderately loud, complex sounds.
    Pienkowski M; Eggermont JJ
    J Neurophysiol; 2011 Aug; 106(2):1016-27. PubMed ID: 21653719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cortical mapping of auditory-evoked offset responses in rats.
    Takahashi H; Nakao M; Kaga K
    Neuroreport; 2004 Jul; 15(10):1565-9. PubMed ID: 15232284
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Distributed representation of tone frequency in highly decodable spatio-temporal activity in the auditory cortex.
    Funamizu A; Kanzaki R; Takahashi H
    Neural Netw; 2011 May; 24(4):321-32. PubMed ID: 21277165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extensive Tonotopic Mapping across Auditory Cortex Is Recapitulated by Spectrally Directed Attention and Systematically Related to Cortical Myeloarchitecture.
    Dick FK; Lehet MI; Callaghan MF; Keller TA; Sereno MI; Holt LL
    J Neurosci; 2017 Dec; 37(50):12187-12201. PubMed ID: 29109238
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Perceptual learning directs auditory cortical map reorganization through top-down influences.
    Polley DB; Steinberg EE; Merzenich MM
    J Neurosci; 2006 May; 26(18):4970-82. PubMed ID: 16672673
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfield differences in intensity and frequency representation of evoked potentials in rat auditory cortex.
    Takahashi H; Nakao M; Kaga K
    Hear Res; 2005 Dec; 210(1-2):9-23. PubMed ID: 16213681
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modifying the Adult Rat Tonotopic Map with Sound Exposure Produces Frequency Discrimination Deficits That Are Recovered with Training.
    Thomas ME; Lane CP; Chaudron YMJ; Cisneros-Franco JM; de Villers-Sidani É
    J Neurosci; 2020 Mar; 40(11):2259-2268. PubMed ID: 32024780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. State-dependent representation of amplitude-modulated noise stimuli in rat auditory cortex.
    Marguet SL; Harris KD
    J Neurosci; 2011 Apr; 31(17):6414-20. PubMed ID: 21525282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spatial and temporal strategy to analyze steady-state sound intensity in cortex.
    Takahashi H; Nakao M; Kaga K
    Neuroreport; 2005 Feb; 16(2):137-40. PubMed ID: 15671863
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anesthetic effects of isoflurane on the tonotopic map and neuronal population activity in the rat auditory cortex.
    Noda T; Takahashi H
    Eur J Neurosci; 2015 Sep; 42(6):2298-311. PubMed ID: 26118739
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Compensating Level-Dependent Frequency Representation in Auditory Cortex by Synaptic Integration of Corticocortical Input.
    Happel MF; Ohl FW
    PLoS One; 2017; 12(1):e0169461. PubMed ID: 28046062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distributed representation of sound intensity in the rat auditory cortex.
    Takahashi H; Nakao M; Kaga K
    Neuroreport; 2004 Sep; 15(13):2061-5. PubMed ID: 15486482
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bidirectional Shifting Effects of the Sound Intensity on the Best Frequency in the Rat Auditory Cortex.
    Tao C; Zhang G; Zhou C; Wang L; Yan S; Zhou Y; Xiong Y
    Sci Rep; 2017 Mar; 7():44493. PubMed ID: 28290533
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mirror-symmetric tonotopic maps in human primary auditory cortex.
    Formisano E; Kim DS; Di Salle F; van de Moortele PF; Ugurbil K; Goebel R
    Neuron; 2003 Nov; 40(4):859-69. PubMed ID: 14622588
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensory input directs spatial and temporal plasticity in primary auditory cortex.
    Kilgard MP; Pandya PK; Vazquez J; Gehi A; Schreiner CE; Merzenich MM
    J Neurophysiol; 2001 Jul; 86(1):326-38. PubMed ID: 11431514
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Accessing ampli-tonotopic organization of rat auditory cortex by microstimulation of cochlear nucleus.
    Takahashi H; Nakao M; Kaga K
    IEEE Trans Biomed Eng; 2005 Jul; 52(7):1333-44. PubMed ID: 16041997
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tone frequency maps and receptive fields in the developing chinchilla auditory cortex.
    Pienkowski M; Harrison RV
    J Neurophysiol; 2005 Jan; 93(1):454-66. PubMed ID: 15342716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.