These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 31026705)
1. In vitro toxicological evaluation of ionic liquids and development of effective bioremediation process for their removal. Thamke VR; Chaudhari AU; Tapase SR; Paul D; Kodam KM Environ Pollut; 2019 Jul; 250():567-577. PubMed ID: 31026705 [TBL] [Abstract][Full Text] [Related]
2. Toxicity study of ionic liquid, 1-butyl-3-methylimidazolium bromide on guppy fish, Poecilia reticulata and its biodegradation by soil bacterium Rhodococcus hoagii VRT1. Thamke VR; Kodam KM J Hazard Mater; 2016 Dec; 320():408-416. PubMed ID: 27585273 [TBL] [Abstract][Full Text] [Related]
4. The effect of alkyl chain length on the degradation of alkylimidazolium- and pyridinium-type ionic liquids in a Fenton-like system. Siedlecka EM; Stepnowski P Environ Sci Pollut Res Int; 2009 Jun; 16(4):453-8. PubMed ID: 18941817 [TBL] [Abstract][Full Text] [Related]
5. Biodegradation of oxygenated and non-oxygenated imidazolium-based ionic liquids in soil. Modelli A; Sali A; Galletti P; Samorì C Chemosphere; 2008 Nov; 73(8):1322-7. PubMed ID: 18715611 [TBL] [Abstract][Full Text] [Related]
6. Structural effects of ionic liquids on microalgal growth inhibition and microbial degradation. Pham TP; Cho CW; Yun YS Environ Sci Pollut Res Int; 2016 Mar; 23(5):4294-300. PubMed ID: 26330315 [TBL] [Abstract][Full Text] [Related]
7. Comparison of imidazolium ionic liquids and traditional organic solvents: effect on activated sludge processes. Gendaszewska D; Liwarska-Bizukojc E Water Sci Technol; 2013; 68(12):2654-60. PubMed ID: 24355854 [TBL] [Abstract][Full Text] [Related]
8. Biodegradation and toxicity of emerging contaminants: Isolation of an exopolysaccharide-producing Sphingomonas sp. for ionic liquids bioremediation. Koutinas M; Vasquez MI; Nicolaou E; Pashali P; Kyriakou E; Loizou E; Papadaki A; Koutinas AA; Vyrides I J Hazard Mater; 2019 Mar; 365():88-96. PubMed ID: 30412811 [TBL] [Abstract][Full Text] [Related]
9. The effect of imidazolium based ionic liquids on wheat and barley germination and growth: Influence of length and oxygen functionalization of alkyl side chain. Tot A; Vraneš M; Maksimović I; Putnik-Delić M; Daničić M; Belić S; Gadžurić S Ecotoxicol Environ Saf; 2018 Jan; 147():401-406. PubMed ID: 28888123 [TBL] [Abstract][Full Text] [Related]
10. Toxicity of imidazolium salt with anion bromide to a phytoplankton Selenastrum capricornutum: effect of alkyl-chain length. Cho CW; Pham TP; Jeon YC; Vijayaraghavan K; Choe WS; Yun YS Chemosphere; 2007 Oct; 69(6):1003-7. PubMed ID: 17655915 [TBL] [Abstract][Full Text] [Related]
11. Identification of metabolites produced during the complete biodegradation of 1-butyl-3-methylimidazolium chloride by an enriched activated sludge microbial community. Al Isawi WA; Rahbarirad S; Walker KA; Venter AR; Docherty KM; Szymczyna BR Chemosphere; 2017 Jan; 167():53-61. PubMed ID: 27710843 [TBL] [Abstract][Full Text] [Related]
13. Influence of oxygen functionalities on the environmental impact of imidazolium based ionic liquids. Deng Y; Besse-Hoggan P; Sancelme M; Delort AM; Husson P; Gomes MF J Hazard Mater; 2011 Dec; 198():165-74. PubMed ID: 22071261 [TBL] [Abstract][Full Text] [Related]
14. Environmental Impact of Ionic Liquids: Automated Evaluation of the Chemical Oxygen Demand of Photochemically Degraded Compounds. Costa SPF; Pereira SAP; Pinto PCAG; Araujo ARTS; Passos MLC; Saraiva MLMFS Chemphyschem; 2017 May; 18(10):1351-1357. PubMed ID: 28217924 [TBL] [Abstract][Full Text] [Related]
15. The ecotoxicity of ionic liquids and traditional organic solvents on microalga Selenastrum capricornutum. Cho CW; Jeon YC; Pham TP; Vijayaraghavan K; Yun YS Ecotoxicol Environ Saf; 2008 Sep; 71(1):166-71. PubMed ID: 17692914 [TBL] [Abstract][Full Text] [Related]
16. Removal of imidazolium ionic liquids by microbial associations: study of the biodegradability and kinetics. Liwarska-Bizukojc E; Gendaszewska D J Biosci Bioeng; 2013 Jan; 115(1):71-5. PubMed ID: 22925899 [TBL] [Abstract][Full Text] [Related]
17. A profile of the in vitro anti-tumor activity of imidazolium-based ionic liquids. Malhotra SV; Kumar V Bioorg Med Chem Lett; 2010 Jan; 20(2):581-5. PubMed ID: 20006501 [TBL] [Abstract][Full Text] [Related]
18. Ionic liquid biodegradability depends on specific wastewater microbial consortia. Docherty KM; Aiello SW; Buehler BK; Jones SE; Szymczyna BR; Walker KA Chemosphere; 2015 Oct; 136():160-6. PubMed ID: 25985304 [TBL] [Abstract][Full Text] [Related]
19. Evaluation of biotreatability of ionic liquids in aerobic and anaerobic conditions. Zgajnar Gotvajn A; Tratar-Pirc E; Bukovec P; Znidaršič Plazl P Water Sci Technol; 2014; 70(4):698-704. PubMed ID: 25116501 [TBL] [Abstract][Full Text] [Related]
20. Emerging risk from "environmentally-friendly" solvents: Interaction of methylimidazolium ionic liquids with the mitochondrial electron transport chain is a key initiation event in their mammalian toxicity. Abdelghany TM; Leitch AC; Nevjestić I; Ibrahim I; Miwa S; Wilson C; Heutz S; Wright MC Food Chem Toxicol; 2020 Nov; 145():111593. PubMed ID: 32777338 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]