BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31026715)

  • 1. Mechanochemical deconstruction of lignocellulosic cell wall polymers with ball-milling.
    Liu H; Chen X; Ji G; Yu H; Gao C; Han L; Xiao W
    Bioresour Technol; 2019 Aug; 286():121364. PubMed ID: 31026715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Systematic comparison for effects of different scale mechanical-NaOH coupling treatments on lignocellulosic components, micromorphology and cellulose crystal structure of wheat straw.
    Gao C; Yang J; Han L
    Bioresour Technol; 2021 Apr; 326():124786. PubMed ID: 33548818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Improving the Yield and Rate of Acid-Catalyzed Deconstruction of Lignin by Mechanochemical Activation.
    Patel DH; Marx D; East ALL
    Chemphyschem; 2020 Dec; 21(24):2660-2666. PubMed ID: 32845560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Origins of covalent linkages within the lignin-carbohydrate network of biomass.
    Beck S; Choi P; Mushrif SH
    Phys Chem Chem Phys; 2022 Aug; 24(34):20480-20490. PubMed ID: 35993292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure-property-degradability relationships of varisized lignocellulosic biomass induced by ball milling on enzymatic hydrolysis and alcoholysis.
    Chen X; He D; Hou T; Lu M; Mosier NS; Han L; Xiao W
    Biotechnol Biofuels Bioprod; 2022 Apr; 15(1):36. PubMed ID: 35379297
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extraction of super high-yield lignin-carbohydrate complexes from rice straw without compromising cellulose hydrolysis.
    Jiang B; Shen F; Jiang Y; Huang M; Zhao L; Lei Y; Hu J; Tian D; Shen F
    Carbohydr Polym; 2024 Jan; 323():121452. PubMed ID: 37940260
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing the enzymatic hydrolysis of corn stover by an integrated wet-milling and alkali pretreatment.
    He X; Miao Y; Jiang X; Xu Z; Ouyang P
    Appl Biochem Biotechnol; 2010 Apr; 160(8):2449-57. PubMed ID: 19669940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Multifunctional Cosolvent Pair Reveals Molecular Principles of Biomass Deconstruction.
    Patri AS; Mostofian B; Pu Y; Ciaffone N; Soliman M; Smith MD; Kumar R; Cheng X; Wyman CE; Tetard L; Ragauskas AJ; Smith JC; Petridis L; Cai CM
    J Am Chem Soc; 2019 Aug; 141(32):12545-12557. PubMed ID: 31304747
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel mechanocatalytical reaction system driven by fluid shear force for the mild and rapid pretreatment of lignocellulosic biomass.
    Li J; Wang Y; Zhu W; Chen S; Deng T; Ma S; Wang H
    Waste Manag; 2022 Jul; 148():98-105. PubMed ID: 35667240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modification of corn stover for improving biodegradability and anaerobic digestion performance by Ceriporiopsis subvermispora.
    Huang W; Wachemo AC; Yuan H; Li X
    Bioresour Technol; 2019 Jul; 283():76-85. PubMed ID: 30901591
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sugarcane cell wall structure and lignin distribution investigated by confocal and electron microscopy.
    Sant'Anna C; Costa LT; Abud Y; Biancatto L; Miguens FC; de Souza W
    Microsc Res Tech; 2013 Aug; 76(8):829-34. PubMed ID: 23733560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solid-State Nuclear Magnetic Resonance as a Tool to Probe the Impact of Mechanical Preprocessing on the Structure and Arrangement of Plant Cell Wall Polymers.
    Munson CR; Gao Y; Mortimer JC; Murray DT
    Front Plant Sci; 2021; 12():766506. PubMed ID: 35095947
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redesigning plant cell walls for the biomass-based bioeconomy.
    Carpita NC; McCann MC
    J Biol Chem; 2020 Oct; 295(44):15144-15157. PubMed ID: 32868456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of
    Schäfer J; Sattler M; Iqbal Y; Lewandowski I; Bunzel M
    Glob Change Biol Bioenergy; 2019 Jan; 11(1):191-205. PubMed ID: 31007724
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Atomic Level Interactions and Suprastructural Configuration of Plant Cell Wall Polymers in Dialkylimidazolium Ionic Liquids.
    Annamraju A; Rajan K; Zuo X; Long BK; Pingali SV; Elder TJ; Labbé N
    Biomacromolecules; 2023 May; 24(5):2164-2172. PubMed ID: 36977326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Effect of Thermomechanical Pretreatment on the Structure and Properties of Lignin-Rich Plant Biomass.
    Podgorbunskikh EM; Bychkov AL; Ryabchikova EI; Lomovsky OI
    Molecules; 2020 Feb; 25(4):. PubMed ID: 32102256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Toward a better understanding of the lignin isolation process from wood.
    Guerra A; Filpponen I; Lucia LA; Saquing C; Baumberger S; Argyropoulos DS
    J Agric Food Chem; 2006 Aug; 54(16):5939-47. PubMed ID: 16881698
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidation of the Structure of Lignin-Carbohydrate Complexes in Ginkgo CW-DHP by
    Zhang K; Liu Y; Cui S; Xie Y
    Molecules; 2021 Sep; 26(19):. PubMed ID: 34641284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lignin-carbohydrate complexes from sisal (Agave sisalana) and abaca (Musa textilis): chemical composition and structural modifications during the isolation process.
    Del Río JC; Prinsen P; Cadena EM; Martínez ÁT; Gutiérrez A; Rencoret J
    Planta; 2016 May; 243(5):1143-58. PubMed ID: 26848983
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical and physicochemical pretreatment of lignocellulosic biomass: a review.
    Brodeur G; Yau E; Badal K; Collier J; Ramachandran KB; Ramakrishnan S
    Enzyme Res; 2011; 2011():787532. PubMed ID: 21687609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.