These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
417 related articles for article (PubMed ID: 31026752)
1. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods. Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752 [TBL] [Abstract][Full Text] [Related]
2. Ensemble multiclassification model for aquatic toxicity of organic compounds. Li X; Liu G; Wang Z; Zhang L; Liu H; Ai H Aquat Toxicol; 2023 Feb; 255():106379. PubMed ID: 36587517 [TBL] [Abstract][Full Text] [Related]
3. Quantitative structure-toxicity relationships of organic chemicals against Pseudokirchneriella subcapitata. Yu X Aquat Toxicol; 2020 Jul; 224():105496. PubMed ID: 32408003 [TBL] [Abstract][Full Text] [Related]
4. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds. Khan K; Benfenati E; Roy K Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527 [TBL] [Abstract][Full Text] [Related]
5. Ensemble multiclassification model for predicting developmental toxicity in zebrafish. Liu G; Li X; Guo Y; Zhang L; Liu H; Ai H Aquat Toxicol; 2024 Jun; 271():106936. PubMed ID: 38723470 [TBL] [Abstract][Full Text] [Related]
6. QSAR study of the acute toxicity to fathead minnow based on a large dataset. Wu X; Zhang Q; Hu J SAR QSAR Environ Res; 2016; 27(2):147-64. PubMed ID: 26911563 [TBL] [Abstract][Full Text] [Related]
7. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints. Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549 [TBL] [Abstract][Full Text] [Related]
8. Validation of a QSAR model for acute toxicity. Pavan M; Netzeva TI; Worth AP SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555 [TBL] [Abstract][Full Text] [Related]
9. ADMET Evaluation in Drug Discovery. 18. Reliable Prediction of Chemical-Induced Urinary Tract Toxicity by Boosting Machine Learning Approaches. Lei T; Sun H; Kang Y; Zhu F; Liu H; Zhou W; Wang Z; Li D; Li Y; Hou T Mol Pharm; 2017 Nov; 14(11):3935-3953. PubMed ID: 29037046 [TBL] [Abstract][Full Text] [Related]
10. Effect of the structural factors of organic compounds on the acute toxicity toward Tinkov OV; Grigorev VY; Razdolsky AN; Grigoryeva LD; Dearden JC SAR QSAR Environ Res; 2020 Aug; 31(8):615-641. PubMed ID: 32713201 [TBL] [Abstract][Full Text] [Related]
11. The accurate QSPR models to predict the bioconcentration factors of nonionic organic compounds based on the heuristic method and support vector machine. Liu H; Yao X; Zhang R; Liu M; Hu Z; Fan B Chemosphere; 2006 May; 63(5):722-33. PubMed ID: 16226786 [TBL] [Abstract][Full Text] [Related]
12. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology. Singh KP; Gupta S; Kumar A; Mohan D Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471 [TBL] [Abstract][Full Text] [Related]
13. Recommendations for Improving Methods and Models for Aquatic Hazard Assessment of Ionizable Organic Chemicals. Escher BI; Abagyan R; Embry M; Klüver N; Redman AD; Zarfl C; Parkerton TF Environ Toxicol Chem; 2020 Feb; 39(2):269-286. PubMed ID: 31569266 [TBL] [Abstract][Full Text] [Related]
14. Generating accurate in silico predictions of acute aquatic toxicity for a range of organic chemicals: Towards similarity-based machine learning methods. Gajewicz-Skretna A; Furuhama A; Yamamoto H; Suzuki N Chemosphere; 2021 Oct; 280():130681. PubMed ID: 34162070 [TBL] [Abstract][Full Text] [Related]
15. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches. Basant N; Gupta S; Singh KP Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614 [TBL] [Abstract][Full Text] [Related]
16. Support vector machine-based model for toxicity of organic compounds against fish. Yu X Regul Toxicol Pharmacol; 2021 Jul; 123():104942. PubMed ID: 33940084 [TBL] [Abstract][Full Text] [Related]
17. CarcinoPred-EL: Novel models for predicting the carcinogenicity of chemicals using molecular fingerprints and ensemble learning methods. Zhang L; Ai H; Chen W; Yin Z; Hu H; Zhu J; Zhao J; Zhao Q; Liu H Sci Rep; 2017 May; 7(1):2118. PubMed ID: 28522849 [TBL] [Abstract][Full Text] [Related]
18. In silico estimation of chemical aquatic toxicity on crustaceans using chemical category methods. Cao Q; Liu L; Yang H; Cai Y; Li W; Liu G; Lee PW; Tang Y Environ Sci Process Impacts; 2018 Sep; 20(9):1234-1243. PubMed ID: 30069560 [TBL] [Abstract][Full Text] [Related]
19. Development of models predicting biodegradation rate rating with multiple linear regression and support vector machine algorithms. Tang W; Li Y; Yu Y; Wang Z; Xu T; Chen J; Lin J; Li X Chemosphere; 2020 Aug; 253():126666. PubMed ID: 32289603 [TBL] [Abstract][Full Text] [Related]
20. Ecotoxicological QSAR modeling of organic compounds against fish: Application of fragment based descriptors in feature analysis. Khan K; Baderna D; Cappelli C; Toma C; Lombardo A; Roy K; Benfenati E Aquat Toxicol; 2019 Jul; 212():162-174. PubMed ID: 31128417 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]