BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 3102677)

  • 1. Activation of mouse peritoneal macrophages by monoclonal antibodies to Mac-1 (complement receptor type 3).
    Ding A; Wright SD; Nathan C
    J Exp Med; 1987 Mar; 165(3):733-49. PubMed ID: 3102677
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of inhibition of immunoglobulin G-mediated phagocytosis by monoclonal antibodies that recognize the Mac-1 antigen.
    Brown EJ; Bohnsack JF; Gresham HD
    J Clin Invest; 1988 Feb; 81(2):365-75. PubMed ID: 2963020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contributions of the Mac-1 glycoprotein family to adherence-dependent granulocyte functions: structure-function assessments employing subunit-specific monoclonal antibodies.
    Anderson DC; Miller LJ; Schmalstieg FC; Rothlein R; Springer TA
    J Immunol; 1986 Jul; 137(1):15-27. PubMed ID: 3519773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-gamma, is associated with macrophage killing of Mycobacterium avium complex.
    Bermudez LE; Young LS
    J Immunol; 1988 May; 140(9):3006-13. PubMed ID: 2834450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Complement-receptor-3 and scavenger-receptor-AI/II mediated myelin phagocytosis in microglia and macrophages.
    Reichert F; Rotshenker S
    Neurobiol Dis; 2003 Feb; 12(1):65-72. PubMed ID: 12609490
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Monoclonal antibody-mediated inhibition of interferon-gamma-induced macrophage antiviral resistance and surface antigen expression.
    Vogel SN; Havell EA; Spitalny GL
    J Immunol; 1986 Apr; 136(8):2917-23. PubMed ID: 3007607
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Activation of mouse peritoneal macrophages in vitro and in vivo by interferon-gamma.
    Murray HW; Spitalny GL; Nathan CF
    J Immunol; 1985 Mar; 134(3):1619-22. PubMed ID: 3918107
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phagocytosis of Mycobacterium leprae by human monocyte-derived macrophages is mediated by complement receptors CR1 (CD35), CR3 (CD11b/CD18), and CR4 (CD11c/CD18) and IFN-gamma activation inhibits complement receptor function and phagocytosis of this bacterium.
    Schlesinger LS; Horwitz MA
    J Immunol; 1991 Sep; 147(6):1983-94. PubMed ID: 1679838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Agonist and antagonist effects of interferon alpha and beta on activation of human macrophages. Two classes of interferon gamma receptors and blockade of the high-affinity sites by interferon alpha or beta.
    Yoshida R; Murray HW; Nathan CF
    J Exp Med; 1988 Mar; 167(3):1171-85. PubMed ID: 2965208
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Lactoferrin acts on I-A and I-E/C antigen+ subpopulations of mouse peritoneal macrophages in the absence of T lymphocytes and other cell types to inhibit production of granulocyte-macrophage colony stimulatory factors in vitro.
    Broxmeyer HE; Platzer E
    J Immunol; 1984 Jul; 133(1):306-14. PubMed ID: 6144710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production.
    Ding AH; Nathan CF; Stuehr DJ
    J Immunol; 1988 Oct; 141(7):2407-12. PubMed ID: 3139757
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Trace levels of bacterial lipopolysaccharide prevent interferon-gamma or tumor necrosis factor-alpha from enhancing mouse peritoneal macrophage respiratory burst capacity.
    Ding AH; Nathan CF
    J Immunol; 1987 Sep; 139(6):1971-7. PubMed ID: 3040860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation (inhibition and augmentation) of complement receptor-3-mediated myelin phagocytosis.
    Reichert F; Slobodov U; Makranz C; Rotshenker S
    Neurobiol Dis; 2001 Jun; 8(3):504-12. PubMed ID: 11442357
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cytokine enhancement of complement-dependent phagocytosis by macrophages: synergy of tumor necrosis factor-alpha and granulocyte-macrophage colony-stimulating factor for phagocytosis of Cryptococcus neoformans.
    Collins HL; Bancroft GJ
    Eur J Immunol; 1992 Jun; 22(6):1447-54. PubMed ID: 1601035
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential regulation of class II MHC determinants on macrophages by IFN-gamma and IL-4.
    Cao H; Wolff RG; Meltzer MS; Crawford RM
    J Immunol; 1989 Dec; 143(11):3524-31. PubMed ID: 2479682
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A monoclonal antibody (3A33) that reacts with a mouse-specific epitope of Mac-1 antigen.
    Martin A; Le Corre R; Pellen P; Bourel D; Merdrignac G; Genetet B; Toujas L
    Tissue Antigens; 1986 Jul; 28(1):15-23. PubMed ID: 2428126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of tumor cell capture by activated macrophages: evidence for involvement of lymphocyte function-associated (LFA)-1 antigen.
    Strassmann G; Springer TA; Somers SD; Adams DO
    J Immunol; 1986 Jun; 136(11):4328-33. PubMed ID: 2422281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-PKC DAG/phorbol-ester receptor(s) inhibit complement receptor-3 and nPKC inhibit scavenger receptor-AI/II-mediated myelin phagocytosis but cPKC, PI3k, and PLCgamma activate myelin phagocytosis by both.
    Cohen G; Makranz C; Spira M; Kodama T; Reichert F; Rotshenker S
    Glia; 2006 Apr; 53(5):538-50. PubMed ID: 16374778
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complement receptor type three-dependent degradation of opsonized erythrocytes by mouse macrophages.
    Rothlein R; Springer TA
    J Immunol; 1985 Oct; 135(4):2668-72. PubMed ID: 3897377
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Examination of macrophage cell surface antigen regulation by rIFN-gamma and IFN-alpha/beta utilizing digital imaging by a novel laser detection system. Anchored cell analysis station (ACAS) 470.
    Hogan MM; Perera PY; Vogel SN
    J Immunol Methods; 1989 Sep; 123(1):9-18. PubMed ID: 2507644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.