These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

60 related articles for article (PubMed ID: 31026859)

  • 1. Analysis of the role of wind information for efficient chemical plume tracing based on optogenetic silkworm moth behavior.
    Shigaki S; Haigo S; Hernandez Reyes C; Sakurai T; Kanzaki R; Kurabayashi D; Sezutsu H
    Bioinspir Biomim; 2019 May; 14(4):046006. PubMed ID: 31026859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Robust Moth-Inspired Algorithm for Odor Source Localization Using Multimodal Information.
    Shigaki S; Yamada M; Kurabayashi D; Hosoda K
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772519
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments.
    Talley JL; White EB; Willis MA
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36354120
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Walking
    Demir M; Kadakia N; Anderson HD; Clark DA; Emonet T
    Elife; 2020 Nov; 9():. PubMed ID: 33140723
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploration-exploitation model of moth-inspired olfactory navigation.
    Lazebnik T; Golov Y; Gurka R; Harari A; Liberzon A
    J R Soc Interface; 2024 Jul; 21(216):20230746. PubMed ID: 39013419
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multisensory-motor integration in olfactory navigation of silkmoth,
    Yamada M; Ohashi H; Hosoda K; Kurabayashi D; Shigaki S
    Elife; 2021 Nov; 10():. PubMed ID: 34822323
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Extremely low neonicotinoid doses alter navigation of pest insects along pheromone plumes.
    Navarro-Roldán MA; Amat C; Bau J; Gemeno C
    Sci Rep; 2019 May; 9(1):8150. PubMed ID: 31148562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open-source computational simulation of moth-inspired navigation algorithm: A benchmark framework.
    Golov Y; Benelli N; Gurka R; Harari A; Zilman G; Liberzon A
    MethodsX; 2021; 8():101529. PubMed ID: 35004194
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Host-Related Olfactory Behavior in a Fruit-Piercing Moth (Lepidoptera: Erebidae) in Far Eastern Russia.
    Zaspel JM; Kononenko VS; Ignell R; Hill SR
    J Insect Sci; 2016; 16(1):. PubMed ID: 27324579
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A spatial model of mosquito host-seeking behavior.
    Cummins B; Cortez R; Foppa IM; Walbeck J; Hyman JM
    PLoS Comput Biol; 2012; 8(5):e1002500. PubMed ID: 22615546
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Analysis of Odor-Tracking Performance of Silk Moth Using a Sensory-Motor Intervention System.
    Shigaki S; Ando N; Sakurai T; Kurabayashi D
    Integr Comp Biol; 2023 Aug; 63(2):343-355. PubMed ID: 37280186
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Extracting spatial information from temporal odor patterns: insights from insects.
    Szyszka P; Emonet T; Edwards TL
    Curr Opin Insect Sci; 2023 Oct; 59():101082. PubMed ID: 37419251
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A gyroscope-free visual-inertial flight control and wind sensing system for 10-mg robots.
    Fuller S; Yu Z; Talwekar YP
    Sci Robot; 2022 Nov; 7(72):eabq8184. PubMed ID: 36417499
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroantennography-based Bio-hybrid Odor-detecting Drone using Silkmoth Antennae for Odor Source Localization.
    Terutsuki D; Uchida T; Fukui C; Sukekawa Y; Okamoto Y; Kanzaki R
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34515671
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Individual tracking reveals long-distance flight-path control in a nocturnally migrating moth.
    Menz MHM; Scacco M; Bürki-Spycher HM; Williams HJ; Reynolds DR; Chapman JW; Wikelski M
    Science; 2022 Aug; 377(6607):764-768. PubMed ID: 35951704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long, short, and medium terms wind speed prediction model based on LSTM optimized by improved moth flame optimization algorithm.
    Li R; Wang J; Li J; Kou M
    Environ Sci Pollut Res Int; 2024 May; 31(25):37256-37282. PubMed ID: 38771541
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active anemosensing hypothesis: how flying insects could estimate ambient wind direction through sensory integration and active movement.
    van Breugel F; Jewell R; Houle J
    J R Soc Interface; 2022 Aug; 19(193):20220258. PubMed ID: 36043287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Near-surface wind variability over spatiotemporal scales relevant to plume tracking insects.
    Houle J; van Breugel F
    Phys Fluids (1994); 2023 May; 35(5):. PubMed ID: 37822569
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robotic Odor Source Localization via Vision and Olfaction Fusion Navigation Algorithm.
    Hassan S; Wang L; Mahmud KR
    Sensors (Basel); 2024 Apr; 24(7):. PubMed ID: 38610520
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A novel framework based on a data-driven approach for modelling the behaviour of organisms in chemical plume tracing.
    Okajima K; Shigaki S; Suko T; Luong DN; Hernandez Reyes C; Hattori Y; Sanada K; Kurabayashi D
    J R Soc Interface; 2021 Aug; 18(181):20210171. PubMed ID: 34404227
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.