These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 31026859)

  • 1. Analysis of the role of wind information for efficient chemical plume tracing based on optogenetic silkworm moth behavior.
    Shigaki S; Haigo S; Hernandez Reyes C; Sakurai T; Kanzaki R; Kurabayashi D; Sezutsu H
    Bioinspir Biomim; 2019 May; 14(4):046006. PubMed ID: 31026859
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling Optimal Strategies for Finding a Resource-Linked, Windborne Odor Plume: Theories, Robotics, and Biomimetic Lessons from Flying Insects.
    Bau J; Cardé RT
    Integr Comp Biol; 2015 Sep; 55(3):461-77. PubMed ID: 25980569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Robust Moth-Inspired Algorithm for Odor Source Localization Using Multimodal Information.
    Shigaki S; Yamada M; Kurabayashi D; Hosoda K
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of vision in odor-plume tracking by walking and flying insects.
    Willis MA; Avondet JL; Zheng E
    J Exp Biol; 2011 Dec; 214(Pt 24):4121-32. PubMed ID: 22116754
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A comparison of odor plume-tracking behavior of walking and flying insects in different turbulent environments.
    Talley JL; White EB; Willis MA
    J Exp Biol; 2023 Jan; 226(2):. PubMed ID: 36354120
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Odor-modulated upwind flight of the sphinx moth, Manduca sexta L.
    Willis MA; Arbas EA
    J Comp Physiol A; 1991 Oct; 169(4):427-40. PubMed ID: 1779417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Moth-inspired navigation algorithm in a turbulent odor plume from a pulsating source.
    Liberzon A; Harrington K; Daniel N; Gurka R; Harari A; Zilman G
    PLoS One; 2018; 13(6):e0198422. PubMed ID: 29897978
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of altering flow and odor information on plume tracking behavior in walking cockroaches, Periplaneta americana (L.).
    Willis MA; Avondet JL; Finnell AS
    J Exp Biol; 2008 Jul; 211(Pt 14):2317-26. PubMed ID: 18587126
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Walking
    Demir M; Kadakia N; Anderson HD; Clark DA; Emonet T
    Elife; 2020 Nov; 9():. PubMed ID: 33140723
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Free-flight responses of Drosophila melanogaster to attractive odors.
    Budick SA; Dickinson MH
    J Exp Biol; 2006 Aug; 209(Pt 15):3001-17. PubMed ID: 16857884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wind selection and drift compensation optimize migratory pathways in a high-flying moth.
    Chapman JW; Reynolds DR; Mouritsen H; Hill JK; Riley JR; Sivell D; Smith AD; Woiwod IP
    Curr Biol; 2008 Apr; 18(7):514-8. PubMed ID: 18394893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Odor identity influences tracking of temporally patterned plumes in Drosophila.
    Krishnan P; Duistermars BJ; Frye MA
    BMC Neurosci; 2011 Jun; 12():62. PubMed ID: 21708035
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Egomotion estimation with optic flow and air velocity sensors.
    Rutkowski AJ; Miller MM; Quinn RD; Willis MA
    Biol Cybern; 2011 Jun; 104(6):351-67. PubMed ID: 21728014
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Normal glomerular organization of the antennal lobes is not necessary for odor-modulated flight in female moths.
    Willis MA; Butler MA; Tolbert LP
    J Comp Physiol A; 1995 Feb; 176(2):205-16. PubMed ID: 7884684
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analysis and manipulation of the structure of odor plumes from a piezo-electric release system and measurements of upwind flight of male almond moths, Cadra cautella, to pheromone plumes.
    Girling RD; Cardé RT
    J Chem Ecol; 2007 Oct; 33(10):1927-45. PubMed ID: 17828430
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Context-dependent olfactory enhancement of optomotor flight control in Drosophila.
    Chow DM; Frye MA
    J Exp Biol; 2008 Aug; 211(Pt 15):2478-85. PubMed ID: 18626082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Representations of odor plume flux are accentuated deep within the moth brain.
    Baker TC
    J Biol; 2009; 8(2):16. PubMed ID: 19239722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reactive searching and infotaxis in odor source localization.
    Voges N; Chaffiol A; Lucas P; Martinez D
    PLoS Comput Biol; 2014 Oct; 10(10):e1003861. PubMed ID: 25330317
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.