These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 31026907)

  • 1. Grayscale Image Recognition Using Spike-Rate-Based Online Learning and Threshold Adjustment of Neurons in a Thin-Film Transistor-Type NOR Flash Memory Array.
    Oh S; Kim CH; Lee S; Park BG; Lee JH
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6055-6060. PubMed ID: 31026907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unsupervised Online Learning With Multiple Postsynaptic Neurons Based on Spike-Timing-Dependent Plasticity Using a Thin-Film Transistor-Type NOR Flash Memory Array.
    Lee S; Kim CH; Oh S; Park BG; Lee JH
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6050-6054. PubMed ID: 31026906
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised online learning of temporal information in spiking neural network using thin-film transistor-type NOR flash memory devices.
    Oh S; Kim CH; Lee S; Kim JS; Lee JH
    Nanotechnology; 2019 Oct; 30(43):435206. PubMed ID: 31342921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Online Learning Method Using Spike-Timing Dependent Plasticity for Neuromorphic Systems.
    Hwang S; Kim H; Kwon MW; Park J; Park BG
    J Nanosci Nanotechnol; 2019 Oct; 19(10):6776-6780. PubMed ID: 31027028
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A TSTDP memristive synapse based on a comprehensive mathematical model of memory-TFT threshold voltage shift.
    Karimi G; Rastegar S
    J Theor Biol; 2022 Jul; 544():111119. PubMed ID: 35381226
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spike-timing dependent plasticity in a transistor-selected resistive switching memory.
    Ambrogio S; Balatti S; Nardi F; Facchinetti S; Ielmini D
    Nanotechnology; 2013 Sep; 24(38):384012. PubMed ID: 23999495
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementation of Neuro-Memristive Synapse for Long-and Short-Term Bio-Synaptic Plasticity.
    Mannan ZI; Kim H; Chua L
    Sensors (Basel); 2021 Jan; 21(2):. PubMed ID: 33477650
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Threshold-Tunable, Spike-Rate-Dependent Plasticity Originating from Interfacial Proton Gating for Pattern Learning and Memory.
    Ren ZY; Zhu LQ; Guo YB; Long TY; Yu F; Xiao H; Lu HL
    ACS Appl Mater Interfaces; 2020 Feb; 12(6):7833-7839. PubMed ID: 31961648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamical model of long-term synaptic plasticity.
    Abarbanel HD; Huerta R; Rabinovich MI
    Proc Natl Acad Sci U S A; 2002 Jul; 99(15):10132-7. PubMed ID: 12114531
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Induction of long-term potentiation and depression phenomena in human induced pluripotent stem cell-derived cortical neurons.
    Odawara A; Katoh H; Matsuda N; Suzuki I
    Biochem Biophys Res Commun; 2016 Jan; 469(4):856-62. PubMed ID: 26718408
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Acquiring new information in a neuronal network: from Hebb's concept to homeostatic plasticity].
    Le Roux N; Amar M; Fossier P
    J Soc Biol; 2008; 202(2):143-60. PubMed ID: 18547512
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiple forms of long-term potentiation and long-term depression converge on a single interneuron in the leech CNS.
    Burrell BD; Sahley CL
    J Neurosci; 2004 Apr; 24(16):4011-9. PubMed ID: 15102916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamic synapses as archives of synaptic history: state-dependent redistribution of synaptic efficacy in the rat hippocampal CA1.
    Yasui T; Fujisawa S; Tsukamoto M; Matsuki N; Ikegaya Y
    J Physiol; 2005 Jul; 566(Pt 1):143-60. PubMed ID: 15845579
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association of mGluR-Dependent LTD of Excitatory Synapses with Endocannabinoid-Dependent LTD of Inhibitory Synapses Leads to EPSP to Spike Potentiation in CA1 Pyramidal Neurons.
    Kim HH; Park JM; Lee SH; Ho WK
    J Neurosci; 2019 Jan; 39(2):224-237. PubMed ID: 30459224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hebbian Spike-Timing Dependent Plasticity at the Cerebellar Input Stage.
    Sgritta M; Locatelli F; Soda T; Prestori F; D'Angelo EU
    J Neurosci; 2017 Mar; 37(11):2809-2823. PubMed ID: 28188217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix metalloprotease activity shapes the magnitude of EPSPs and spike plasticity within the hippocampal CA3 network.
    Wójtowicz T; Mozrzymas JW
    Hippocampus; 2014 Feb; 24(2):135-53. PubMed ID: 24115249
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cocaine Promotes Coincidence Detection and Lowers Induction Threshold during Hebbian Associative Synaptic Potentiation in Prefrontal Cortex.
    Ruan H; Yao WD
    J Neurosci; 2017 Jan; 37(4):986-997. PubMed ID: 28123030
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational Theory Underlying Acute Vestibulo-ocular Reflex Motor Learning with Cerebellar Long-Term Depression and Long-Term Potentiation.
    Inagaki K; Hirata Y
    Cerebellum; 2017 Aug; 16(4):827-839. PubMed ID: 28444617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robustness of retrieval properties against imbalance between long-term potentiation and depression of spike-timing-dependent plasticity.
    Matsumoto N; Okada M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Dec; 68(6 Pt 1):061914. PubMed ID: 14754241
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning rules for spike timing-dependent plasticity depend on dendritic synapse location.
    Letzkus JJ; Kampa BM; Stuart GJ
    J Neurosci; 2006 Oct; 26(41):10420-9. PubMed ID: 17035526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.