These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 3102695)

  • 1. Amphetamine and reserpine deplete brain biogenic amines and alter blow fly feeding behavior.
    Brookhart GL; Edgecomb RS; Murdock LL
    J Neurochem; 1987 Apr; 48(4):1307-15. PubMed ID: 3102695
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of substituted phenylethylamines on blowfly feeding behavior.
    Long TF; Edgecomb RS; Murdock LL
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1986; 83(1):201-9. PubMed ID: 2869900
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modification of leech behavior patterns by reserpine-induced amine depletion.
    O'Gara BA; Chae H; Latham LB; Friesen WO
    J Neurosci; 1991 Jan; 11(1):96-110. PubMed ID: 1986071
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulation of biogenic amine metabolism in the brain.
    Turner AJ; Illingworth JA; Tipton KF
    Biochem J; 1974 Nov; 144(2):353-60. PubMed ID: 4618480
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Whole brain monoamine detection and manipulation in a stalk-eyed fly.
    Bubak AN; Swallow JG; Renner KJ
    J Neurosci Methods; 2013 Sep; 219(1):124-30. PubMed ID: 23891953
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Clonidine, octopaminergic receptor agonist, reduces protein feeding in the blow fly, Phormia regina (Meigen).
    Stoffolano JG; Lim MA; Downer KE
    J Insect Physiol; 2007 Dec; 53(12):1293-9. PubMed ID: 17692332
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The fight and flight responses of crickets depleted of biogenic amines.
    Stevenson PA; Hofmann HA; Schoch K; Schildberger K
    J Neurobiol; 2000 May; 43(2):107-20. PubMed ID: 10770840
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Trace amines inhibit the electrically evoked release of [3H]acetylcholine from slices of rat striatum in the presence of pargyline: similarities between beta-phenylethylamine and amphetamine.
    Baud P; Arbilla S; Cantrill RC; Scatton B; Langer SZ
    J Pharmacol Exp Ther; 1985 Oct; 235(1):220-9. PubMed ID: 3930699
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selective depletion of dopamine, octopamine, and 5-hydroxytryptamine in the nervous tissue of the cockroach (Periplaneta americana).
    Sloley BD; Orikasa S
    J Neurochem; 1988 Aug; 51(2):535-41. PubMed ID: 3134509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of depletion of cerebral monoamines on the concentration of glycogen and on amphetamine-induced glycogenolysis in the brain.
    Hutchins DA; Rogers KJ
    Br J Pharmacol; 1973 May; 48(1):19-29. PubMed ID: 4269287
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of reserpine on reproduction and serotonin immunoreactivity in the stable fly Stomoxys calcitrans (L.).
    Liu SS; Li AY; Witt CM; Pérez de León AA
    J Insect Physiol; 2013 Sep; 59(9):974-82. PubMed ID: 23321479
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reserpine inhibits amphetamine action in ventral midbrain culture.
    Sulzer D; St Remy C; Rayport S
    Mol Pharmacol; 1996 Feb; 49(2):338-42. PubMed ID: 8632767
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioural pharmacology of octopamine, tyramine and dopamine in honey bees.
    Scheiner R; Plückhahn S; Oney B; Blenau W; Erber J
    Behav Brain Res; 2002 Nov; 136(2):545-53. PubMed ID: 12429417
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Food-search behavior and its relation to the central excitatory state in the genetic analysis of the blow fly Phormia regina.
    McGuire TR; Tully T
    J Comp Psychol; 1986 Mar; 100(1):52-8. PubMed ID: 3698583
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Antagonistic Serotonergic and Octopaminergic Neural Circuits Mediate Food-Dependent Locomotory Behavior in
    Churgin MA; McCloskey RJ; Peters E; Fang-Yen C
    J Neurosci; 2017 Aug; 37(33):7811-7823. PubMed ID: 28698386
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pharmacological dissociation between the reinforcing, sensitizing, and response-releasing functions of reward in honeybee classical conditioning.
    Menzel R; Heyne A; Kinzel C; Gerber B; Fiala A
    Behav Neurosci; 1999 Aug; 113(4):744-54. PubMed ID: 10495082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Octopamine, dopamine and noradrenaline content of the brain of the locust, Schistocerca gregaria.
    Robertson HA
    Experientia; 1976 May; 32(5):552-4. PubMed ID: 776646
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanism of tetrahydroaminoacridine-evoked release of endogenous 5-hydroxytryptamine and dopamine from rat brain tissue prisms.
    Robinson TN; De Souza RJ; Cross AJ; Green AR
    Br J Pharmacol; 1989 Dec; 98(4):1127-36. PubMed ID: 2611486
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reserpine causes biphasic nociceptive sensitivity alteration in conjunction with brain biogenic amine tones in rats.
    Oe T; Tsukamoto M; Nagakura Y
    Neuroscience; 2010 Sep; 169(4):1860-71. PubMed ID: 20600634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differences in the effects of amphetamine and methylphenidate on brain dopamine turnover and serum prolactin concentration in reserpine-treated rats.
    Clemens JA; Fuller RW
    Life Sci; 1979 May; 24(22):2077-81. PubMed ID: 459703
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 8.