BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31027249)

  • 1. Microfluidics-Based Fabrication of Cell-Laden Hydrogel Microfibers for Potential Applications in Tissue Engineering.
    Wang G; Jia L; Han F; Wang J; Yu L; Yu Y; Turnbull G; Guo M; Shu W; Li B
    Molecules; 2019 Apr; 24(8):. PubMed ID: 31027249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microfluidic Fabrication of Biomimetic Helical Hydrogel Microfibers for Blood-Vessel-on-a-Chip Applications.
    Jia L; Han F; Yang H; Turnbull G; Wang J; Clarke J; Shu W; Guo M; Li B
    Adv Healthc Mater; 2019 Jul; 8(13):e1900435. PubMed ID: 31081247
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microfluidic fabrication of microengineered hydrogels and their application in tissue engineering.
    Chung BG; Lee KH; Khademhosseini A; Lee SH
    Lab Chip; 2012 Jan; 12(1):45-59. PubMed ID: 22105780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip.
    Wei D; Sun J; Bolderson J; Zhong M; Dalby MJ; Cusack M; Yin H; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2017 May; 9(17):14606-14617. PubMed ID: 28157291
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controlled Fabrication of Bioactive Microfibers for Creating Tissue Constructs Using Microfluidic Techniques.
    Cheng Y; Yu Y; Fu F; Wang J; Shang L; Gu Z; Zhao Y
    ACS Appl Mater Interfaces; 2016 Jan; 8(2):1080-6. PubMed ID: 26741731
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bioprinting of Cell-Laden Microfiber: Can It Become a Standard Product?
    Shao L; Gao Q; Xie C; Fu J; Xiang M; He Y
    Adv Healthc Mater; 2019 May; 8(9):e1900014. PubMed ID: 30866173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Degradation regulated bioactive hydrogel as the bioink with desirable moldability for microfluidic biofabrication.
    Liu X; Zuo Y; Sun J; Guo Z; Fan H; Zhang X
    Carbohydr Polym; 2017 Dec; 178():8-17. PubMed ID: 29050618
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic Fabrication of Bioinspired Cavity-Microfibers for 3D Scaffolds.
    Tian Y; Wang J; Wang L
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29219-29226. PubMed ID: 30113807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A facile method to fabricate hydrogels with microchannel-like porosity for tissue engineering.
    Hammer J; Han LH; Tong X; Yang F
    Tissue Eng Part C Methods; 2014 Feb; 20(2):169-76. PubMed ID: 23745610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simple Spinning of Heterogeneous Hollow Microfibers on Chip.
    Yu Y; Wei W; Wang Y; Xu C; Guo Y; Qin J
    Adv Mater; 2016 Aug; 28(31):6649-55. PubMed ID: 27185309
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of capillary microfluidics for spinning cell-laden microfibers.
    Yu Y; Shang L; Guo J; Wang J; Zhao Y
    Nat Protoc; 2018 Nov; 13(11):2557-2579. PubMed ID: 30353174
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Fabrication of Hollow Hydrogel Microfiber via 3D Printing-Assisted Microfluidics and Its Application as a Biomimetic Blood Capillary.
    Lan D; Shang Y; Su H; Liang M; Liu Y; Li H; Feng Q; Cao X; Dong H
    ACS Biomater Sci Eng; 2021 Oct; 7(10):4971-4981. PubMed ID: 34503336
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Composite ECM-alginate microfibers produced by microfluidics as scaffolds with biomineralization potential.
    Angelozzi M; Miotto M; Penolazzi L; Mazzitelli S; Keane T; Badylak SF; Piva R; Nastruzzi C
    Mater Sci Eng C Mater Biol Appl; 2015 Nov; 56():141-53. PubMed ID: 26249575
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [One-step generation of droplet-filled hydrogel microfibers for 3D cell culture using an all-aqueous microfluidic system].
    Zhao MQ; Liu HT; Zhang X; Gan ZQ; Qin JH
    Se Pu; 2023 Sep; 41(9):742-751. PubMed ID: 37712538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber-Based Mini Tissue with Morphology-Controllable GelMA Microfibers.
    Shao L; Gao Q; Zhao H; Xie C; Fu J; Liu Z; Xiang M; He Y
    Small; 2018 Nov; 14(44):e1802187. PubMed ID: 30253060
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A microfluidic strategy to fabricate ultra-thin polyelectrolyte hollow microfibers as 3D cellular carriers.
    Liu H; Wang Y; Chen W; Yu Y; Jiang L; Qin J
    Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109705. PubMed ID: 31499950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of endothelial cell-laden carrageenan microfibers for microvascularized bone tissue engineering applications.
    Mihaila SM; Popa EG; Reis RL; Marques AP; Gomes ME
    Biomacromolecules; 2014 Aug; 15(8):2849-60. PubMed ID: 24963559
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Microfluidic Device to Fabricate One-Step Cell Bead-Laden Hydrogel Struts for Tissue Engineering.
    Kim J; Lee H; Jin EJ; Jo Y; Kang BE; Ryu D; Kim G
    Small; 2022 Jan; 18(1):e2106487. PubMed ID: 34854561
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microfiber Fabricated via Microfluidic Spinning toward Tissue Engineering Applications.
    Tian L; Ma J; Li W; Zhang X; Gao X
    Macromol Biosci; 2023 Mar; 23(3):e2200429. PubMed ID: 36543751
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.