BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

330 related articles for article (PubMed ID: 31027249)

  • 21. Conductive Polymer Hydrogel Microfibers from Multiflow Microfluidics.
    Guo J; Yu Y; Wang H; Zhang H; Zhang X; Zhao Y
    Small; 2019 Apr; 15(15):e1805162. PubMed ID: 30884163
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microfluidic Fabrication of Multistimuli-Responsive Tubular Hydrogels for Cellular Scaffolds.
    Kim D; Jo A; Imani KBC; Kim D; Chung JW; Yoon J
    Langmuir; 2018 Apr; 34(14):4351-4359. PubMed ID: 29553747
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Microfluidic Printing of Tunable Hollow Microfibers for Vascular Tissue Engineering.
    Wu Z; Cai H; Ao Z; Xu J; Heaps S; Guo F
    Adv Mater Technol; 2021 Aug; 6(8):. PubMed ID: 34458563
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Microfluidic chip-based fabrication of PLGA microfiber scaffolds for tissue engineering.
    Hwang CM; Khademhosseini A; Park Y; Sun K; Lee SH
    Langmuir; 2008 Jun; 24(13):6845-51. PubMed ID: 18512874
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A cell-laden microfluidic hydrogel.
    Ling Y; Rubin J; Deng Y; Huang C; Demirci U; Karp JM; Khademhosseini A
    Lab Chip; 2007 Jun; 7(6):756-62. PubMed ID: 17538718
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Bio-functionalized silk hydrogel microfluidic systems.
    Zhao S; Chen Y; Partlow BP; Golding AS; Tseng P; Coburn J; Applegate MB; Moreau JE; Omenetto FG; Kaplan DL
    Biomaterials; 2016 Jul; 93():60-70. PubMed ID: 27077566
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal muscle-adipose cocultured tissue fabricated using cell-laden microfibers and a hydrogel sheet.
    Jo B; Morimoto Y; Takeuchi S
    Biotechnol Bioeng; 2022 Feb; 119(2):636-643. PubMed ID: 34761805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A flexible microfluidic strategy to generate grooved microfibers for guiding cell alignment.
    Zhao M; Liu H; Zhang X; Wang H; Tao T; Qin J
    Biomater Sci; 2021 Jul; 9(14):4880-4890. PubMed ID: 34152350
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Vascular-like network prepared using hollow hydrogel microfibers.
    Takei T; Kitazono Z; Ozuno Y; Yoshinaga T; Nishimata H; Yoshida M
    J Biosci Bioeng; 2016 Mar; 121(3):336-40. PubMed ID: 26199226
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Seeding of Cells on the Inner Surface of Alginate Hollow Microfibers.
    Aykar SS; Alimoradi N; Taghavimehr M; Montazami R; Hashemi NN
    Adv Healthc Mater; 2022 Jun; 11(11):e2102701. PubMed ID: 35142451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Fabrication of circular microfluidic network in enzymatically-crosslinked gelatin hydrogel.
    He J; Chen R; Lu Y; Zhan L; Liu Y; Li D; Jin Z
    Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():53-60. PubMed ID: 26652348
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microfluidic Fabrication of Bio-Inspired Microfibers with Controllable Magnetic Spindle-Knots for 3D Assembly and Water Collection.
    He XH; Wang W; Liu YM; Jiang MY; Wu F; Deng K; Liu Z; Ju XJ; Xie R; Chu LY
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):17471-81. PubMed ID: 26192108
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Photo-cross-linkable methacrylated gelatin and hydroxyapatite hybrid hydrogel for modularly engineering biomimetic osteon.
    Zuo Y; Liu X; Wei D; Sun J; Xiao W; Zhao H; Guo L; Wei Q; Fan H; Zhang X
    ACS Appl Mater Interfaces; 2015 May; 7(19):10386-94. PubMed ID: 25928732
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 3D printing of heterogeneous microfibers with multi-hollow structure via microfluidic spinning.
    Li W; Yao K; Tian L; Xue C; Zhang X; Gao X
    J Tissue Eng Regen Med; 2022 Oct; 16(10):913-922. PubMed ID: 35802061
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microfluidic hydrogels for tissue engineering.
    Huang GY; Zhou LH; Zhang QC; Chen YM; Sun W; Xu F; Lu TJ
    Biofabrication; 2011 Mar; 3(1):012001. PubMed ID: 21372342
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated fabrication of hydrogel microfibers with tunable diameters for controlled cell alignment.
    Yang Y; Liu X; Wei D; Zhong M; Sun J; Guo L; Fan H; Zhang X
    Biofabrication; 2017 Nov; 9(4):045009. PubMed ID: 28976359
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase.
    Chen PY; Yang KC; Wu CC; Yu JH; Lin FH; Sun JS
    Acta Biomater; 2014 Feb; 10(2):912-20. PubMed ID: 24262131
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Patterning collagen/poloxamine-methacrylate hydrogels for tissue-engineering-inspired microfluidic and laser lithography applications.
    Khan OF; Sefton MV
    J Biomater Sci Polym Ed; 2011; 22(18):2499-514. PubMed ID: 21144168
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Engineering bone regeneration with novel cell-laden hydrogel microfiber-injectable calcium phosphate scaffold.
    Song Y; Zhang C; Wang P; Wang L; Bao C; Weir MD; Reynolds MA; Ren K; Zhao L; Xu HHK
    Mater Sci Eng C Mater Biol Appl; 2017 Jun; 75():895-905. PubMed ID: 28415545
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Electrospun thermosensitive hydrogel scaffold for enhanced chondrogenesis of human mesenchymal stem cells.
    Brunelle AR; Horner CB; Low K; Ico G; Nam J
    Acta Biomater; 2018 Jan; 66():166-176. PubMed ID: 29128540
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.