These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

276 related articles for article (PubMed ID: 31027800)

  • 41. Spore Cortex Hydrolysis Precedes Dipicolinic Acid Release during Clostridium difficile Spore Germination.
    Francis MB; Allen CA; Sorg JA
    J Bacteriol; 2015 Jul; 197(14):2276-83. PubMed ID: 25917906
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores.
    Wang S; Doona CJ; Setlow P; Li YQ
    Appl Environ Microbiol; 2016 Oct; 82(19):5775-84. PubMed ID: 27422840
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Fluoride movement into and out of Bacillus spores and growing cells and effects of fluoride accumulation on spore properties.
    Dong W; Setlow P
    J Appl Microbiol; 2019 Feb; 126(2):503-515. PubMed ID: 30430725
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Direct high-pressure NMR observation of dipicolinic acid leaking from bacterial spore: A crucial step for thermal inactivation.
    Akasaka K; Maeno A; Yamazaki A
    Biophys Chem; 2017 Dec; 231():10-14. PubMed ID: 28457517
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A Bacillus subtilis mutant requiring dipicolinic acid for the development of heat-resistant spores.
    Balassa G; Milhaud P; Raulet E; Silva MT; Sousa JC
    J Gen Microbiol; 1979 Feb; 110(2):365-79. PubMed ID: 108357
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The release of dipicolinic acid--the rate-limiting step of Bacillus endospore inactivation during the high pressure thermal sterilization process.
    Reineke K; Schlumbach K; Baier D; Mathys A; Knorr D
    Int J Food Microbiol; 2013 Mar; 162(1):55-63. PubMed ID: 23353555
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals.
    Setlow P
    J Appl Microbiol; 2006 Sep; 101(3):514-25. PubMed ID: 16907802
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Proteomics and microscopy tools for the study of antimicrobial resistance and germination mechanisms of bacterial spores.
    Abhyankar WR; Wen J; Swarge BN; Tu Z; de Boer R; Smelt JPPM; de Koning LJ; Manders E; de Koster CG; Brul S
    Food Microbiol; 2019 Aug; 81():89-96. PubMed ID: 30910091
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Inactivation by Pulsed Light of Bacillus subtilis Spores with Impaired Protection Factors.
    Esbelin J; Malléa S; Clair G; Carlin F
    Photochem Photobiol; 2016 Mar; 92(2):301-307. PubMed ID: 26790838
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Killing of spores of Bacillus subtilis by peroxynitrite appears to be caused by membrane damage.
    Genest PC; Setlow B; Melly E; Setlow P
    Microbiology (Reading); 2002 Jan; 148(Pt 1):307-314. PubMed ID: 11782523
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Analysis of the germination of spores of Bacillus subtilis with temperature sensitive spo mutations in the spoVA operon.
    Vepachedu VR; Setlow P
    FEMS Microbiol Lett; 2004 Oct; 239(1):71-7. PubMed ID: 15451103
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Efficient reduction in vegetative cells and spores of Bacillus subtilis by essential oil components-coated silica filtering materials.
    Ribes S; Ruiz-Rico M; Barat JM
    J Food Sci; 2021 Jun; 86(6):2590-2603. PubMed ID: 33931858
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Physiological responses of Bacillus amyloliquefaciens spores to high pressure.
    Ahn J; Balasubramaniam VM
    J Microbiol Biotechnol; 2007 Mar; 17(3):524-9. PubMed ID: 18050959
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A study on the effects of high pressure and heat on Bacillus subtilis spores at low pH.
    Wuytack EY; Michiels CW
    Int J Food Microbiol; 2001 Mar; 64(3):333-41. PubMed ID: 11294355
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Environmental Persistence of Bacillus anthracis and Bacillus subtilis Spores.
    Wood JP; Meyer KM; Kelly TJ; Choi YW; Rogers JV; Riggs KB; Willenberg ZJ
    PLoS One; 2015; 10(9):e0138083. PubMed ID: 26372011
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Uptake of UVc induced photoproducts of dipicolinic acid by Bacillus subtilis spores - Effects on the germination and UVc resistance of the spores.
    Dikec J; Pacheco M; Lavaud M; Winckler P; Perrier-Cornet JM
    J Photochem Photobiol B; 2022 Nov; 236():112569. PubMed ID: 36152351
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Single-spore elemental analyses indicate that dipicolinic acid-deficient Bacillus subtilis spores fail to accumulate calcium.
    Hintze PE; Nicholson WL
    Arch Microbiol; 2010 Jun; 192(6):493-7. PubMed ID: 20396869
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Bacterial Spores in Food: Survival, Emergence, and Outgrowth.
    Wells-Bennik MH; Eijlander RT; den Besten HM; Berendsen EM; Warda AK; Krawczyk AO; Nierop Groot MN; Xiao Y; Zwietering MH; Kuipers OP; Abee T
    Annu Rev Food Sci Technol; 2016; 7():457-82. PubMed ID: 26934174
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Involvement of Coat Proteins in Bacillus subtilis Spore Germination in High-Salinity Environments.
    Nagler K; Setlow P; Reineke K; Driks A; Moeller R
    Appl Environ Microbiol; 2015 Oct; 81(19):6725-35. PubMed ID: 26187959
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Quantifying the effect of sorbic acid, heat and combination of both on germination and outgrowth of Bacillus subtilis spores at single cell resolution.
    Pandey R; Pieper GH; Ter Beek A; Vischer NO; Smelt JP; Manders EM; Brul S
    Food Microbiol; 2015 Dec; 52():88-96. PubMed ID: 26338121
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.