BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

300 related articles for article (PubMed ID: 31028153)

  • 21. Take a deep breath: peptide signalling in stomatal patterning and differentiation.
    Richardson LG; Torii KU
    J Exp Bot; 2013 Dec; 64(17):5243-51. PubMed ID: 23997204
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf.
    Lopez-Anido CB; Vatén A; Smoot NK; Sharma N; Guo V; Gong Y; Anleu Gil MX; Weimer AK; Bergmann DC
    Dev Cell; 2021 Apr; 56(7):1043-1055.e4. PubMed ID: 33823130
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differentiation of Arabidopsis guard cells: analysis of the networks incorporating the basic helix-loop-helix transcription factor, FAMA.
    Hachez C; Ohashi-Ito K; Dong J; Bergmann DC
    Plant Physiol; 2011 Mar; 155(3):1458-72. PubMed ID: 21245191
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The Arabidopsis stomatal polarity protein BASL mediates distinct processes before and after cell division to coordinate cell size and fate asymmetries.
    Gong Y; Alassimone J; Muroyama A; Amador G; Varnau R; Liu A; Bergmann DC
    Development; 2021 Sep; 148(18):. PubMed ID: 34463761
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular control of stomatal development.
    Zoulias N; Harrison EL; Casson SA; Gray JE
    Biochem J; 2018 Jan; 475(2):441-454. PubMed ID: 29386377
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stomatal development in Arabidopsis and grasses: differences and commonalities.
    Serna L
    Int J Dev Biol; 2011; 55(1):5-10. PubMed ID: 21425077
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Establishing asymmetry: stomatal division and differentiation in plants.
    Guo X; Wang L; Dong J
    New Phytol; 2021 Oct; 232(1):60-67. PubMed ID: 34254322
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Misregulation of MYB16 expression causes stomatal cluster formation by disrupting polarity during asymmetric cell divisions.
    Yang SL; Tran N; Tsai MY; Ho CK
    Plant Cell; 2022 Jan; 34(1):455-476. PubMed ID: 34718767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. KIN10 promotes stomatal development through stabilization of the SPEECHLESS transcription factor.
    Han C; Liu Y; Shi W; Qiao Y; Wang L; Tian Y; Fan M; Deng Z; Lau OS; De Jaeger G; Bai MY
    Nat Commun; 2020 Aug; 11(1):4214. PubMed ID: 32843632
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Down-Regulating the Expression of 53 Soybean Transcription Factor Genes Uncovers a Role for SPEECHLESS in Initiating Stomatal Cell Lineages during Embryo Development.
    Danzer J; Mellott E; Bui AQ; Le BH; Martin P; Hashimoto M; Perez-Lesher J; Chen M; Pelletier JM; Somers DA; Goldberg RB; Harada JJ
    Plant Physiol; 2015 Jul; 168(3):1025-35. PubMed ID: 25963149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Stomatal Spacing Safeguards Stomatal Dynamics by Facilitating Guard Cell Ion Transport Independent of the Epidermal Solute Reservoir.
    Papanatsiou M; Amtmann A; Blatt MR
    Plant Physiol; 2016 Sep; 172(1):254-63. PubMed ID: 27406168
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Stomatal differentiation: the beginning and the end.
    Torii KU
    Curr Opin Plant Biol; 2015 Dec; 28():16-22. PubMed ID: 26344486
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcriptional control of cell fate in the stomatal lineage.
    Simmons AR; Bergmann DC
    Curr Opin Plant Biol; 2016 Feb; 29():1-8. PubMed ID: 26550955
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Linking cell cycle to stomatal differentiation.
    Han SK; Torii KU
    Curr Opin Plant Biol; 2019 Oct; 51():66-73. PubMed ID: 31075538
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Opposing, Polarity-Driven Nuclear Migrations Underpin Asymmetric Divisions to Pattern Arabidopsis Stomata.
    Muroyama A; Gong Y; Bergmann DC
    Curr Biol; 2020 Nov; 30(22):4467-4475.e4. PubMed ID: 32946753
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Experimental validation of the mechanism of stomatal development diversification.
    Doll Y; Koga H; Tsukaya H
    J Exp Bot; 2023 Sep; 74(18):5667-5681. PubMed ID: 37555400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The bHLH protein, MUTE, controls differentiation of stomata and the hydathode pore in Arabidopsis.
    Pillitteri LJ; Bogenschutz NL; Torii KU
    Plant Cell Physiol; 2008 Jun; 49(6):934-43. PubMed ID: 18450784
    [TBL] [Abstract][Full Text] [Related]  

  • 38. YODA-HSP90 Module Regulates Phosphorylation-Dependent Inactivation of SPEECHLESS to Control Stomatal Development under Acute Heat Stress in Arabidopsis.
    Samakovli D; Tichá T; Vavrdová T; Ovečka M; Luptovčiak I; Zapletalová V; Kuchařová A; Křenek P; Krasylenko Y; Margaritopoulou T; Roka L; Milioni D; Komis G; Hatzopoulos P; Šamaj J
    Mol Plant; 2020 Apr; 13(4):612-633. PubMed ID: 31935463
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Mutation in the bHLH Domain of the SPCH Transcription Factor Uncovers a BR-Dependent Mechanism for Stomatal Development.
    de Marcos A; Houbaert A; Triviño M; Delgado D; Martín-Trillo M; Russinova E; Fenoll C; Mena M
    Plant Physiol; 2017 Jun; 174(2):823-842. PubMed ID: 28507175
    [TBL] [Abstract][Full Text] [Related]  

  • 40. bHLH proteins know when to make a stoma.
    Serna L
    Trends Plant Sci; 2007 Nov; 12(11):483-485. PubMed ID: 17928257
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.