BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 31028437)

  • 1. Functional response of sediment bacterial community to iron-reducing bioaugmentation with Shewanella decolorationis S12.
    Pan Y; Yang X; Sun G; Xu M
    Appl Microbiol Biotechnol; 2019 Jun; 103(12):4997-5005. PubMed ID: 31028437
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Role of Enriched Microbial Consortium on Iron-Reducing Bioaugmentation in Sediments.
    Pan Y; Yang X; Xu M; Sun G
    Front Microbiol; 2017; 8():462. PubMed ID: 28373869
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the enhancement of zero valent iron on microbial azo reduction.
    Fang Y; Xu M; Wu WM; Chen X; Sun G; Guo J; Liu X
    BMC Microbiol; 2015 Apr; 15():85. PubMed ID: 25888062
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Zero-valent iron-enhanced azoreduction by the Shewanella decolorationis S12].
    Zhou Q; Chen XJ; Guo J; Sun GP; Xu MY
    Huan Jing Ke Xue; 2013 Jul; 34(7):2855-61. PubMed ID: 24028023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial community dynamic associated with autochthonous bioaugmentation for enhanced Cu phytoremediation of salt-marsh sediments.
    Almeida CMR; Oliveira T; Reis I; Gomes CR; Mucha AP
    Mar Environ Res; 2017 Dec; 132():68-78. PubMed ID: 29122290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of bioaugmentation on indigenous PCB dechlorinating activity in sediment microcosms.
    Fagervold SK; Watts JE; May HD; Sowers KR
    Water Res; 2011 Jul; 45(13):3899-907. PubMed ID: 21601905
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of iron in azoreduction by resting cells of Shewanella decolorationis S12.
    Chen X; Sun G; Xu M
    J Appl Microbiol; 2011 Feb; 110(2):580-6. PubMed ID: 21159097
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced reductive dechlorination of DDT in an anaerobic system of dissimilatory iron-reducing bacteria and iron oxide.
    Li FB; Li XM; Zhou SG; Zhuang L; Cao F; Huang DY; Xu W; Liu TX; Feng CH
    Environ Pollut; 2010 May; 158(5):1733-40. PubMed ID: 20031285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Abundance and diversity of iron reducing bacteria communities in the sediments of a heavily polluted freshwater lake.
    Fan YY; Li BB; Yang ZC; Cheng YY; Liu DF; Yu HQ
    Appl Microbiol Biotechnol; 2018 Dec; 102(24):10791-10801. PubMed ID: 30334090
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of oxytetracycline and sulfachloropyridazine residues on the reductive activity of Shewanella decolorationis S12.
    Wang Y; Wang L; Li F; Liang J; Li Y; Dai J; Loh TC; Ho YW
    J Agric Food Chem; 2009 Jul; 57(13):5878-83. PubMed ID: 19527026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Effects of iron on azoreduction by Shewanella decolorationis S12].
    Chen XJ; Xu MY; Sun GP
    Huan Jing Ke Xue; 2010 Jan; 31(1):230-6. PubMed ID: 20329544
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Indigenous microbial communities in Albertan sediments are capable of anaerobic benzene biodegradation under methanogenic, sulfate-reducing, nitrate-reducing, and iron-reducing redox conditions.
    Lee K; Ulrich A
    Water Environ Res; 2021 Apr; 93(4):524-534. PubMed ID: 32892398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Humic substances act as electron acceptor and redox mediator for microbial dissimilatory azoreduction by Shewanella decolorationis S12.
    Hong YG; Guo J; Xu ZC; Xu MY; Sun GP
    J Microbiol Biotechnol; 2007 Mar; 17(3):428-37. PubMed ID: 18050946
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbially Mediated Coupling of Fe and N Cycles by Nitrate-Reducing Fe(II)-Oxidizing Bacteria in Littoral Freshwater Sediments.
    Schaedler F; Lockwood C; Lueder U; Glombitza C; Kappler A; Schmidt C
    Appl Environ Microbiol; 2018 Jan; 84(2):. PubMed ID: 29101195
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Molecular mechanism of zero valent iron-enhanced microbial azo reduction.
    Fang Y; Chen X; Zhong Y; Yang Y; Liu F; Guo J; Xu M
    Environ Pollut; 2021 Dec; 290():118046. PubMed ID: 34461416
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence for rapid microscale bacterial redox cycling of iron in circumneutral environments.
    Sobolev D; Roden EE
    Antonie Van Leeuwenhoek; 2002 Aug; 81(1-4):587-97. PubMed ID: 12448754
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adaptive Responses of
    Fang Y; Liu J; Kong G; Liu X; Yang Y; Li E; Chen X; Song D; You X; Sun G; Guo J; Xu M
    Appl Environ Microbiol; 2019 Aug; 85(16):. PubMed ID: 31175185
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The characteristics and two-step reaction model of p-nitroacetophenone biodegradation mediated by Shewanella decolorationis S12 and electron shuttle in the presence/absence of goethite.
    Zhu W; Wang R; Huang T; Wu F
    Environ Technol; 2014; 35(21-24):3116-23. PubMed ID: 25244139
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Shewanella decolorationis LDS1 Chromate Resistance.
    Lemaire ON; Honoré FA; Tempel S; Fortier EM; Leimkühler S; Méjean V; Iobbi-Nivol C
    Appl Environ Microbiol; 2019 Sep; 85(18):. PubMed ID: 31300400
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial colonization of an in situ sediment cap and correlation to stratified redox zones.
    Himmelheber DW; Thomas SH; Löffler FE; Taillefert M; Hughes JB
    Environ Sci Technol; 2009 Jan; 43(1):66-74. PubMed ID: 19209586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.