These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
519 related articles for article (PubMed ID: 31028447)
1. Prediction of response after chemoradiation for esophageal cancer using a combination of dosimetry and CT radiomics. Jin X; Zheng X; Chen D; Jin J; Zhu G; Deng X; Han C; Gong C; Zhou Y; Liu C; Xie C Eur Radiol; 2019 Nov; 29(11):6080-6088. PubMed ID: 31028447 [TBL] [Abstract][Full Text] [Related]
2. Predicting the need for a replan in oropharyngeal cancer: A radiomic, clinical, and dosimetric model. Chinnery TA; Lang P; Nichols AC; Mattonen SA Med Phys; 2024 May; 51(5):3510-3520. PubMed ID: 38100260 [TBL] [Abstract][Full Text] [Related]
3. Modeling pathologic response of esophageal cancer to chemoradiation therapy using spatial-temporal 18F-FDG PET features, clinical parameters, and demographics. Zhang H; Tan S; Chen W; Kligerman S; Kim G; D'Souza WD; Suntharalingam M; Lu W Int J Radiat Oncol Biol Phys; 2014 Jan; 88(1):195-203. PubMed ID: 24189128 [TBL] [Abstract][Full Text] [Related]
4. Cochlea CT radiomics predicts chemoradiotherapy induced sensorineural hearing loss in head and neck cancer patients: A machine learning and multi-variable modelling study. Abdollahi H; Mostafaei S; Cheraghi S; Shiri I; Rabi Mahdavi S; Kazemnejad A Phys Med; 2018 Jan; 45():192-197. PubMed ID: 29329660 [TBL] [Abstract][Full Text] [Related]
5. Dosimetric Factors and Radiomics Features Within Different Regions of Interest in Planning CT Images for Improving the Prediction of Radiation Pneumonitis. Jiang W; Song Y; Sun Z; Qiu J; Shi L Int J Radiat Oncol Biol Phys; 2021 Jul; 110(4):1161-1170. PubMed ID: 33548340 [TBL] [Abstract][Full Text] [Related]
6. The Role of PET-Based Radiomic Features in Predicting Local Control of Esophageal Cancer Treated with Concurrent Chemoradiotherapy. Xiong J; Yu W; Ma J; Ren Y; Fu X; Zhao J Sci Rep; 2018 Jul; 8(1):9902. PubMed ID: 29967326 [TBL] [Abstract][Full Text] [Related]
7. CT radiomic features for predicting resectability of oesophageal squamous cell carcinoma as given by feature analysis: a case control study. Ou J; Li R; Zeng R; Wu CQ; Chen Y; Chen TW; Zhang XM; Wu L; Jiang Y; Yang JQ; Cao JM; Tang S; Tang MJ; Hu J Cancer Imaging; 2019 Oct; 19(1):66. PubMed ID: 31619297 [TBL] [Abstract][Full Text] [Related]
8. Classification of early stage non-small cell lung cancers on computed tomographic images into histological types using radiomic features: interobserver delineation variability analysis. Haga A; Takahashi W; Aoki S; Nawa K; Yamashita H; Abe O; Nakagawa K Radiol Phys Technol; 2018 Mar; 11(1):27-35. PubMed ID: 29209915 [TBL] [Abstract][Full Text] [Related]
9. Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy. Xie C; Yu X; Tan N; Zhang J; Su W; Ni W; Li C; Zhao Z; Xiang Z; Shao L; Li H; Wu J; Cao Z; Jin J; Jin X Radiother Oncol; 2024 Oct; 199():110438. PubMed ID: 39013503 [TBL] [Abstract][Full Text] [Related]
10. Using clinical and radiomic feature-based machine learning models to predict pathological complete response in patients with esophageal squamous cell carcinoma receiving neoadjuvant chemoradiation. Wang J; Zhu X; Zeng J; Liu C; Shen W; Sun X; Lin Q; Fang J; Chen Q; Ji Y Eur Radiol; 2023 Dec; 33(12):8554-8563. PubMed ID: 37439939 [TBL] [Abstract][Full Text] [Related]
12. Pre-treatment CT radiomics to predict 3-year overall survival following chemoradiotherapy of esophageal cancer. Larue RTHM; Klaassen R; Jochems A; Leijenaar RTH; Hulshof MCCM; van Berge Henegouwen MI; Schreurs WMJ; Sosef MN; van Elmpt W; van Laarhoven HWM; Lambin P Acta Oncol; 2018 Nov; 57(11):1475-1481. PubMed ID: 30067421 [TBL] [Abstract][Full Text] [Related]
13. Value of [ Li K; Sun H; Lu Z; Xin J; Zhang L; Guo Y; Guo Q Eur J Radiol; 2018 Sep; 106():160-166. PubMed ID: 30150039 [TBL] [Abstract][Full Text] [Related]
14. Machine-learning with region-level radiomic and dosimetric features for predicting radiotherapy-induced rectal toxicities in prostate cancer patients. Yang Z; Noble DJ; Shelley L; Berger T; Jena R; McLaren DB; Burnet NG; Nailon WH Radiother Oncol; 2023 Jun; 183():109593. PubMed ID: 36870609 [TBL] [Abstract][Full Text] [Related]
15. Machine-learning-based computed tomography radiomic analysis for histologic subtype classification of thymic epithelial tumours. Hu J; Zhao Y; Li M; Liu Y; Wang F; Weng Q; You R; Cao D Eur J Radiol; 2020 May; 126():108929. PubMed ID: 32169748 [TBL] [Abstract][Full Text] [Related]
16. Assessment of Intratumoral and Peritumoral Computed Tomography Radiomics for Predicting Pathological Complete Response to Neoadjuvant Chemoradiation in Patients With Esophageal Squamous Cell Carcinoma. Hu Y; Xie C; Yang H; Ho JWK; Wen J; Han L; Chiu KWH; Fu J; Vardhanabhuti V JAMA Netw Open; 2020 Sep; 3(9):e2015927. PubMed ID: 32910196 [TBL] [Abstract][Full Text] [Related]
17. CT-based radiomic signatures for prediction of pathologic complete response in esophageal squamous cell carcinoma after neoadjuvant chemoradiotherapy. Yang Z; He B; Zhuang X; Gao X; Wang D; Li M; Lin Z; Luo R J Radiat Res; 2019 Jul; 60(4):538-545. PubMed ID: 31111948 [TBL] [Abstract][Full Text] [Related]
18. Optimizing the radiomics-machine-learning model based on non-contrast enhanced CT for the simplified risk categorization of thymic epithelial tumors: A large cohort retrospective study. Feng XL; Wang SZ; Chen HH; Huang YX; Xin YK; Zhang T; Cheng DL; Mao L; Li XL; Liu CX; Hu YC; Wang W; Cui GB; Nan HY Lung Cancer; 2022 Apr; 166():150-160. PubMed ID: 35287067 [TBL] [Abstract][Full Text] [Related]
19. Computed Tomography-Based Radiomic Features Could Potentially Predict Microsatellite Instability Status in Stage II Colorectal Cancer: A Preliminary Study. Fan S; Li X; Cui X; Zheng L; Ren X; Ma W; Ye Z Acad Radiol; 2019 Dec; 26(12):1633-1640. PubMed ID: 30929999 [TBL] [Abstract][Full Text] [Related]