BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 31028591)

  • 1. Two-pore physiologically based pharmacokinetic model with de novo derived parameters for predicting plasma PK of different size protein therapeutics.
    Li Z; Shah DK
    J Pharmacokinet Pharmacodyn; 2019 Jun; 46(3):305-318. PubMed ID: 31028591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Translational two-pore PBPK model to characterize whole-body disposition of different-size endogenous and exogenous proteins.
    Liu S; Li Y; Li Z; Wu S; Harrold JM; Shah DK
    J Pharmacokinet Pharmacodyn; 2024 May; ():. PubMed ID: 38691205
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two-pore physiologically based pharmacokinetic model validation using whole-body biodistribution of trastuzumab and different-size fragments in mice.
    Li Z; Li Y; Chang HP; Yu X; Shah DK
    J Pharmacokinet Pharmacodyn; 2021 Oct; 48(5):743-762. PubMed ID: 34146191
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Towards a platform PBPK model to characterize the plasma and tissue disposition of monoclonal antibodies in preclinical species and human.
    Shah DK; Betts AM
    J Pharmacokinet Pharmacodyn; 2012 Feb; 39(1):67-86. PubMed ID: 22143261
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Two-Pore Physiologically Based Pharmacokinetic Model to Predict Subcutaneously Administered Different-Size Antibody/Antibody Fragments.
    Li Z; Yu X; Li Y; Verma A; Chang HP; Shah DK
    AAPS J; 2021 May; 23(3):62. PubMed ID: 33942169
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A translational platform PBPK model for antibody disposition in the brain.
    Chang HY; Wu S; Meno-Tetang G; Shah DK
    J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):319-338. PubMed ID: 31115858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PBPK model for antibody disposition in mouse brain: validation using large-pore microdialysis data.
    Wu S; Le Prieult F; Phipps CJ; Mezler M; Shah DK
    J Pharmacokinet Pharmacodyn; 2022 Dec; 49(6):579-592. PubMed ID: 36088452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of Size on Solid Tumor Disposition of Protein Therapeutics.
    Li Z; Li Y; Chang HP; Chang HY; Guo L; Shah DK
    Drug Metab Dispos; 2019 Oct; 47(10):1136-1145. PubMed ID: 31387870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Second-generation minimal physiologically-based pharmacokinetic model for monoclonal antibodies.
    Cao Y; Balthasar JP; Jusko WJ
    J Pharmacokinet Pharmacodyn; 2013 Oct; 40(5):597-607. PubMed ID: 23996115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a physiologically-based pharmacokinetic model for ocular disposition of monoclonal antibodies in rabbits.
    Bussing D; K Shah D
    J Pharmacokinet Pharmacodyn; 2020 Dec; 47(6):597-612. PubMed ID: 32876799
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Molecular size on the clearance of antibody fragments.
    Li Z; Krippendorff BF; Shah DK
    Pharm Res; 2017 Oct; 34(10):2131-2141. PubMed ID: 28681164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-assembled cross-species/cross-modalities two-pore physiologically based pharmacokinetic model for biologics in mice and rats.
    Sepp A; Meno-Tetang G; Weber A; Sanderson A; Schon O; Berges A
    J Pharmacokinet Pharmacodyn; 2019 Aug; 46(4):339-359. PubMed ID: 31079322
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Across-Species Scaling of Monoclonal Antibody Pharmacokinetics Using a Minimal PBPK Model.
    Zhao J; Cao Y; Jusko WJ
    Pharm Res; 2015 Oct; 32(10):3269-81. PubMed ID: 25939552
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A generic whole body physiologically based pharmacokinetic model for therapeutic proteins in PK-Sim.
    Niederalt C; Kuepfer L; Solodenko J; Eissing T; Siegmund HU; Block M; Willmann S; Lippert J
    J Pharmacokinet Pharmacodyn; 2018 Apr; 45(2):235-257. PubMed ID: 29234936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a Translational Physiologically Based Pharmacokinetic Model for Antibody-Drug Conjugates: a Case Study with T-DM1.
    Khot A; Tibbitts J; Rock D; Shah DK
    AAPS J; 2017 Nov; 19(6):1715-1734. PubMed ID: 28808917
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physiologically Based Modeling to Predict Monoclonal Antibody Pharmacokinetics in Humans from in vitro Physiochemical Properties.
    Hu S; Datta-Mannan A; D'Argenio DZ
    MAbs; 2022; 14(1):2056944. PubMed ID: 35491902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scale-up of a physiologically-based pharmacokinetic model to predict the disposition of monoclonal antibodies in monkeys.
    Glassman PM; Chen Y; Balthasar JP
    J Pharmacokinet Pharmacodyn; 2015 Oct; 42(5):527-40. PubMed ID: 26364301
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development and Application of a Physiologically-Based Pharmacokinetic Model to Predict the Pharmacokinetics of Therapeutic Proteins from Full-term Neonates to Adolescents.
    Pan X; Stader F; Abduljalil K; Gill KL; Johnson TN; Gardner I; Jamei M
    AAPS J; 2020 May; 22(4):76. PubMed ID: 32449129
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A minimal physiologically based pharmacokinetic model to study the combined effect of antibody size, charge, and binding affinity to FcRn/antigen on antibody pharmacokinetics.
    Patidar K; Pillai N; Dhakal S; Avery LB; Mavroudis PD
    J Pharmacokinet Pharmacodyn; 2024 Feb; ():. PubMed ID: 38400996
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interstitial IgG antibody pharmacokinetics assessed by combined in vivo- and physiologically-based pharmacokinetic modelling approaches.
    Eigenmann MJ; Karlsen TV; Krippendorff BF; Tenstad O; Fronton L; Otteneder MB; Wiig H
    J Physiol; 2017 Dec; 595(24):7311-7330. PubMed ID: 28960303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.