BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 31028838)

  • 1. Bioengineered scaffolds for 3D culture demonstrate extracellular matrix-mediated mechanisms of chemotherapy resistance in glioblastoma.
    Xiao W; Wang S; Zhang R; Sohrabi A; Yu Q; Liu S; Ehsanipour A; Liang J; Bierman RD; Nathanson DA; Seidlits SK
    Matrix Biol; 2020 Jan; 85-86():128-146. PubMed ID: 31028838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Brain-Mimetic 3D Culture Platforms Allow Investigation of Cooperative Effects of Extracellular Matrix Features on Therapeutic Resistance in Glioblastoma.
    Xiao W; Zhang R; Sohrabi A; Ehsanipour A; Sun S; Liang J; Walthers CM; Ta L; Nathanson DA; Seidlits SK
    Cancer Res; 2018 Mar; 78(5):1358-1370. PubMed ID: 29282221
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hyaluronic acid-functionalized gelatin hydrogels reveal extracellular matrix signals temper the efficacy of erlotinib against patient-derived glioblastoma specimens.
    Pedron S; Wolter GL; Chen JE; Laken SE; Sarkaria JN; Harley BAC
    Biomaterials; 2019 Oct; 219():119371. PubMed ID: 31352310
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioengineered 3D brain tumor model to elucidate the effects of matrix stiffness on glioblastoma cell behavior using PEG-based hydrogels.
    Wang C; Tong X; Yang F
    Mol Pharm; 2014 Jul; 11(7):2115-25. PubMed ID: 24712441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fabrication and Characterization of Chitosan-Hyaluronic Acid Scaffolds with Varying Stiffness for Glioblastoma Cell Culture.
    Erickson AE; Lan Levengood SK; Sun J; Chang FC; Zhang M
    Adv Healthc Mater; 2018 Aug; 7(15):e1800295. PubMed ID: 29893067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Porous chitosan-hyaluronic acid scaffolds as a mimic of glioblastoma microenvironment ECM.
    Florczyk SJ; Wang K; Jana S; Wood DL; Sytsma SK; Sham J; Kievit FM; Zhang M
    Biomaterials; 2013 Dec; 34(38):10143-50. PubMed ID: 24075410
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A human co-culture cell model incorporating microglia supports glioblastoma growth and migration, and confers resistance to cytotoxics.
    Leite DM; Zvar Baskovic B; Civita P; Neto C; Gumbleton M; Pilkington GJ
    FASEB J; 2020 Jan; 34(1):1710-1727. PubMed ID: 31914660
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Culture on 3D Chitosan-Hyaluronic Acid Scaffolds Enhances Stem Cell Marker Expression and Drug Resistance in Human Glioblastoma Cancer Stem Cells.
    Wang K; Kievit FM; Erickson AE; Silber JR; Ellenbogen RG; Zhang M
    Adv Healthc Mater; 2016 Dec; 5(24):3173-3181. PubMed ID: 27805789
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CD44-mediated adhesion to hyaluronic acid contributes to mechanosensing and invasive motility.
    Kim Y; Kumar S
    Mol Cancer Res; 2014 Oct; 12(10):1416-29. PubMed ID: 24962319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel 3D in vitro model of glioblastoma reveals resistance to temozolomide which was potentiated by hypoxia.
    Musah-Eroje A; Watson S
    J Neurooncol; 2019 Apr; 142(2):231-240. PubMed ID: 30694423
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glioma initiating cells form a differentiation niche via the induction of extracellular matrices and integrin αV.
    Niibori-Nambu A; Midorikawa U; Mizuguchi S; Hide T; Nagai M; Komohara Y; Nagayama M; Hirayama M; Kobayashi D; Tsubota N; Takezaki T; Makino K; Nakamura H; Takeya M; Kuratsu J; Araki N
    PLoS One; 2013; 8(5):e59558. PubMed ID: 23704872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel nanohydrogel of hyaluronic acid loaded with quercetin alone and in combination with temozolomide as new therapeutic tool, CD44 targeted based, of glioblastoma multiforme.
    Barbarisi M; Iaffaioli RV; Armenia E; Schiavo L; De Sena G; Tafuto S; Barbarisi A; Quagliariello V
    J Cell Physiol; 2018 Oct; 233(10):6550-6564. PubMed ID: 29030990
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glioblastoma Spheroid Invasion through Soft, Brain-Like Matrices Depends on Hyaluronic Acid-CD44 Interactions.
    Safarians G; Sohrabi A; Solomon I; Xiao W; Bastola S; Rajput BW; Epperson M; Rosenzweig I; Tamura K; Singer B; Huang J; Harrison MJ; Sanazzaro T; Condro MC; Kornblum HI; Seidlits SK
    Adv Healthc Mater; 2023 Jun; 12(14):e2203143. PubMed ID: 36694362
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pre-Clinical Drug Testing in 2D and 3D Human In Vitro Models of Glioblastoma Incorporating Non-Neoplastic Astrocytes: Tunneling Nano Tubules and Mitochondrial Transfer Modulates Cell Behavior and Therapeutic Respons.
    Civita P; M Leite D; Pilkington GJ
    Int J Mol Sci; 2019 Nov; 20(23):. PubMed ID: 31795330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of moesin in hyaluronan induced cell migration in glioblastoma multiforme.
    DeSouza LV; Matta A; Karim Z; Mukherjee J; Wang XS; Krakovska O; Zadeh G; Guha A; Siu KM
    Mol Cancer; 2013 Jul; 12():74. PubMed ID: 23855374
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The TNF receptor family member Fn14 is highly expressed in recurrent glioblastoma and in GBM patient-derived xenografts with acquired temozolomide resistance.
    Hersh DS; Harder BG; Roos A; Peng S; Heath JE; Legesse T; Kim AJ; Woodworth GF; Tran NL; Winkles JA
    Neuro Oncol; 2018 Sep; 20(10):1321-1330. PubMed ID: 29897522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nuclear factor I A promotes temozolomide resistance in glioblastoma via activation of nuclear factor κB pathway.
    Yu X; Wang M; Zuo J; Wahafu A; Mao P; Li R; Wu W; Xie W; Wang J
    Life Sci; 2019 Nov; 236():116917. PubMed ID: 31614149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic brain tumor niche regulates glioblastoma cells towards a cancer stem cell phenotype.
    Liu YC; Lee IC; Chen PY
    J Neurooncol; 2018 May; 137(3):511-522. PubMed ID: 29357090
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the role of novel EZH2 inhibitors in primary glioblastoma cell cultures: effects on proliferation, epithelial-mesenchymal transition, migration, and on the pro-inflammatory phenotype.
    Stazi G; Taglieri L; Nicolai A; Romanelli A; Fioravanti R; Morrone S; Sabatino M; Ragno R; Taurone S; Nebbioso M; Carletti R; Artico M; Valente S; Scarpa S; Mai A
    Clin Epigenetics; 2019 Dec; 11(1):173. PubMed ID: 31791385
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The Potential of the Fibronectin Inhibitor Arg-Gly-Asp-Ser in the Development of Therapies for Glioblastoma.
    Castro-Ribeiro ML; Castro VIB; Vieira de Castro J; Pires RA; Reis RL; Costa BM; Ferreira H; Neves NM
    Int J Mol Sci; 2024 Apr; 25(9):. PubMed ID: 38732135
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.