BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31029174)

  • 1. Visual attention, EEG alpha power and T7-Fz connectivity are implicated in prosthetic hand control and can be optimized through gaze training.
    Parr JVV; Vine SJ; Wilson MR; Harrison NR; Wood G
    J Neuroeng Rehabil; 2019 Apr; 16(1):52. PubMed ID: 31029174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Examining the Spatiotemporal Disruption to Gaze When Using a Myoelectric Prosthetic Hand.
    Parr JVV; Vine SJ; Harrison NR; Wood G
    J Mot Behav; 2018; 50(4):416-425. PubMed ID: 28925815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visuomotor behaviours when using a myoelectric prosthesis.
    Sobuh MM; Kenney LP; Galpin AJ; Thies SB; McLaughlin J; Kulkarni J; Kyberd P
    J Neuroeng Rehabil; 2014 Apr; 11():72. PubMed ID: 24758375
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reducing Grip Uncertainty During Initial Prosthetic Hand Use Improves Eye-Hand Coordination and Lowers Mental Workload.
    Mohamed MO; Wood G; Wright DJ; Parr JVV
    J Mot Behav; 2024; 56(4):475-485. PubMed ID: 38522858
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gaze training enhances laparoscopic technical skill acquisition and multi-tasking performance: a randomized, controlled study.
    Wilson MR; Vine SJ; Bright E; Masters RS; Defriend D; McGrath JS
    Surg Endosc; 2011 Dec; 25(12):3731-9. PubMed ID: 21671125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Psycho-physiological assessment of a prosthetic hand sensory feedback system based on an auditory display: a preliminary study.
    Gonzalez J; Soma H; Sekine M; Yu W
    J Neuroeng Rehabil; 2012 Jun; 9():33. PubMed ID: 22682425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A tool for measuring mental workload during prosthesis use: The Prosthesis Task Load Index (PROS-TLX).
    Parr JVV; Galpin A; Uiga L; Marshall B; Wright DJ; Franklin ZC; Wood G
    PLoS One; 2023; 18(5):e0285382. PubMed ID: 37141379
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A scoping review of eye tracking metrics used to assess visuomotor behaviours of upper limb prosthesis users.
    Cheng KY; Rehani M; Hebert JS
    J Neuroeng Rehabil; 2023 Apr; 20(1):49. PubMed ID: 37095489
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in performance over time while learning to use a myoelectric prosthesis.
    Bouwsema H; van der Sluis CK; Bongers RM
    J Neuroeng Rehabil; 2014 Feb; 11():16. PubMed ID: 24568148
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Visuomotor behaviors and performance in a dual-task paradigm with and without vibrotactile feedback when using a myoelectric controlled hand.
    Raveh E; Friedman J; Portnoy S
    Assist Technol; 2018; 30(5):274-280. PubMed ID: 28628379
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative Eye Gaze and Movement Differences in Visuomotor Adaptations to Varying Task Demands Among Upper-Extremity Prosthesis Users.
    Hebert JS; Boser QA; Valevicius AM; Tanikawa H; Lavoie EB; Vette AH; Pilarski PM; Chapman CS
    JAMA Netw Open; 2019 Sep; 2(9):e1911197. PubMed ID: 31517965
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving bimanual interaction with a prosthesis using semi-autonomous control.
    Volkmar R; Dosen S; Gonzalez-Vargas J; Baum M; Markovic M
    J Neuroeng Rehabil; 2019 Nov; 16(1):140. PubMed ID: 31727087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implicit development of gaze strategies support motor improvements during action encoding training of prosthesis use.
    Bayani KY; Lawson RR; Levinson L; Mitchell S; Atawala N; Otwell M; Rickerson B; Wheaton LA
    Neuropsychologia; 2019 Apr; 127():75-83. PubMed ID: 30807755
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gaze training improves the retention and transfer of laparoscopic technical skills in novices.
    Vine SJ; Chaytor RJ; McGrath JS; Masters RS; Wilson MR
    Surg Endosc; 2013 Sep; 27(9):3205-13. PubMed ID: 23479253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial limb representation in amputees.
    van den Heiligenberg FMZ; Orlov T; Macdonald SN; Duff EP; Henderson Slater D; Beckmann CF; Johansen-Berg H; Culham JC; Makin TR
    Brain; 2018 May; 141(5):1422-1433. PubMed ID: 29534154
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Eye-hand re-coordination: A pilot investigation of gaze and reach biofeedback in chronic stroke.
    Rizzo JR; Beheshti M; Shafieesabet A; Fung J; Hosseini M; Rucker JC; Snyder LH; Hudson TE
    Prog Brain Res; 2019; 249():361-374. PubMed ID: 31325995
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning-based artificial vision for grasp classification in myoelectric hands.
    Ghazaei G; Alameer A; Degenaar P; Morgan G; Nazarpour K
    J Neural Eng; 2017 Jun; 14(3):036025. PubMed ID: 28467317
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Spatiotemporal Coupling of Hand and Eye Movements When Using a Myoelectric Prosthetic Hand.
    Cheng KY; Chapman CS; Hebert JS
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176081
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of the effects of adding vibrotactile feedback to myoelectric prosthesis users on performance and visual attention in a dual-task paradigm.
    Raveh E; Friedman J; Portnoy S
    Clin Rehabil; 2018 Oct; 32(10):1308-1316. PubMed ID: 29756458
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Intermanual transfer effect in young children after training in a complex skill: mechanistic, pseudorandomized, pretest-posttest study.
    Romkema S; Bongers RM; van der Sluis CK
    Phys Ther; 2015 May; 95(5):730-9. PubMed ID: 25504483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.