BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31029335)

  • 1. Biomechanical compatibility of high strength nickel free stainless steel bone plate under lightweight design.
    Ren Y; Zhao H; Yang K; Zhang Y
    Mater Sci Eng C Mater Biol Appl; 2019 Aug; 101():415-422. PubMed ID: 31029335
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Titanium versus stainless steel alloy bridge plates for distal femur fractures: Does callus form earlier with titanium?
    Kutzler M; Patterson JT; Anz H; Siahaan J; Warner SJ; Gary JL
    Eur J Orthop Surg Traumatol; 2024 May; 34(4):2147-2153. PubMed ID: 38564013
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implant Material, Type of Fixation at the Shaft, and Position of Plate Modify Biomechanics of Distal Femur Plate Osteosynthesis.
    Kandemir U; Augat P; Konowalczyk S; Wipf F; von Oldenburg G; Schmidt U
    J Orthop Trauma; 2017 Aug; 31(8):e241-e246. PubMed ID: 28394844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of stainless steel and titanium low-contact dynamic compression plate application on the vascularity and mechanical properties of cortical bone after fracture.
    Jain R; Podworny N; Hearn T; Anderson GI; Schemitsch EH
    J Orthop Trauma; 1997 Oct; 11(7):490-5. PubMed ID: 9334950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of different composite plates on the healing of femoral fractures.
    Yuling T; Xiao C; Junxia Z; Jun J; Xinghua L
    J Mech Behav Biomed Mater; 2024 Mar; 151():106356. PubMed ID: 38181571
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomechanics of bone-fracture fixation by stiffness-graded plates in comparison with stainless-steel plates.
    Ganesh VK; Ramakrishna K; Ghista DN
    Biomed Eng Online; 2005 Jul; 4():46. PubMed ID: 16045807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study of a new medical stainless steel].
    Ren Y; Yang K; Zhang B; Yang H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2006 Oct; 23(5):1101-3, 1122. PubMed ID: 17121363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Bone-Plate Material on the Predicted Stresses in the Tibial Shaft Comminuted Fractures: A Finite Element Analysis.
    Zhou K; Yang H
    J Invest Surg; 2022 Jan; 35(1):132-140. PubMed ID: 33089722
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanostructured nickel-free austenitic stainless steel/hydroxyapatite composites.
    Tulinski M; Jurczyk M
    J Nanosci Nanotechnol; 2012 Nov; 12(11):8779-82. PubMed ID: 23421285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Corrosion and haemocompatibility of 316L stainless steel with electroplated Rh film].
    Liu J; Yang D; Liang C; Guo L; Kong L; Cai Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Jun; 18(2):169-72. PubMed ID: 11450526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of callus formation in distal femur fractures after carbon fiber composite versus stainless steel plate fixation.
    Byun SE; Vintimilla DR; Bedeir YH; Dean CS; Parry JA; Hak DJ; Mauffrey C
    Eur J Orthop Surg Traumatol; 2020 Aug; 30(6):1103-1107. PubMed ID: 32356122
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A simplified application (APP) for the parametric design of screw-plate fixation of bone fractures.
    Chung CY
    J Mech Behav Biomed Mater; 2018 Jan; 77():642-648. PubMed ID: 29101896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical Comparison of Volar Fixed-Angle Locking Plates for AO C3 Distal Radius Fractures: Titanium Versus Stainless Steel With Compression.
    Marshall T; Momaya A; Eberhardt A; Chaudhari N; Hunt TR
    J Hand Surg Am; 2015 Oct; 40(10):2032-8. PubMed ID: 26253601
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of in vivo corrosion of 316L stainless steel posterior thoracolumbar plate systems: a retrieval study.
    Majid K; Crowder T; Baker E; Baker K; Koueiter D; Shields E; Herkowitz HN
    J Spinal Disord Tech; 2011 Dec; 24(8):500-5. PubMed ID: 21336173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Locked plating of distal femur fractures leads to inconsistent and asymmetric callus formation.
    Lujan TJ; Henderson CE; Madey SM; Fitzpatrick DC; Marsh JL; Bottlang M
    J Orthop Trauma; 2010 Mar; 24(3):156-62. PubMed ID: 20182251
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Notch sensitivity jeopardizes titanium locking plate fatigue strength.
    Tseng WJ; Chao CK; Wang CC; Lin J
    Injury; 2016 Dec; 47(12):2726-2732. PubMed ID: 27717540
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stainless steel in bone surgery.
    Disegi JA; Eschbach L
    Injury; 2000 Dec; 31 Suppl 4():2-6. PubMed ID: 11270076
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomechanical evaluation of different plates for fixation of canine radial osteotomies.
    Jain R; Podworny N; Hearn T; Richards RR; Schemitsch EH
    J Trauma; 1998 Jan; 44(1):193-7. PubMed ID: 9464772
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Carbon fiber reinforced plastic (CFRP) plates versus stainless steel dynamic compression plates in the treatment of fractures of the tibiae in dogs.
    Skirving AP; Day R; Macdonald W; McLaren R
    Clin Orthop Relat Res; 1987 Nov; (224):117-24. PubMed ID: 3665229
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Corrosion behavior of high nitrogen nickel-free austenitic stainless steel in the presence of artificial saliva and Streptococcus mutans.
    Yang C; Wang Q; Ren Y; Jin D; Liu D; Moradi M; Chen X; Li H; Xu D; Wang F
    Bioelectrochemistry; 2021 Dec; 142():107940. PubMed ID: 34492448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.