BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31029420)

  • 1. Protein synthesis inhibition induces proteasome assembly and function.
    Sakellari M; Chondrogianni N; Gonos ES
    Biochem Biophys Res Commun; 2019 Jun; 514(1):224-230. PubMed ID: 31029420
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A cell-based screen for inhibitors of protein folding and degradation.
    Boschelli F; Golas JM; Petersen R; Lau V; Chen L; Tkach D; Zhao Q; Fruhling DS; Liu H; Nam C; Arndt KT
    Cell Stress Chaperones; 2010 Nov; 15(6):913-27. PubMed ID: 20717760
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting heat shock proteins 70/90 and proteasome for cancer therapy.
    Wang RE
    Curr Med Chem; 2011; 18(27):4250-64. PubMed ID: 21838681
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome.
    Reeg S; Jung T; Castro JP; Davies KJA; Henze A; Grune T
    Free Radic Biol Med; 2016 Oct; 99():153-166. PubMed ID: 27498116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interplay between recombinant Hsp70 and proteasomes: proteasome activity modulation and ubiquitin-independent cleavage of Hsp70.
    Morozov AV; Astakhova TM; Garbuz DG; Krasnov GS; Bobkova NV; Zatsepina OG; Karpov VL; Evgen'ev MB
    Cell Stress Chaperones; 2017 Sep; 22(5):687-697. PubMed ID: 28447215
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hsp90 Chaperones Bluetongue Virus Proteins and Prevents Proteasomal Degradation.
    Mohl BP; Roy P
    J Virol; 2019 Oct; 93(20):. PubMed ID: 31375577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Chaperone-mediated 26S proteasome remodeling facilitates free K63 ubiquitin chain production and aggresome clearance.
    Nanduri P; Hao R; Fitzpatrick T; Yao TP
    J Biol Chem; 2015 Apr; 290(15):9455-64. PubMed ID: 25713068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of cytochrome P450 2E1 by heat shock protein 90-dependent stabilization and CHIP-dependent proteasomal degradation.
    Morishima Y; Peng HM; Lin HL; Hollenberg PF; Sunahara RK; Osawa Y; Pratt WB
    Biochemistry; 2005 Dec; 44(49):16333-40. PubMed ID: 16331994
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct patterns of HSP30 and HSP70 degradation in Xenopus laevis A6 cells recovering from thermal stress.
    Khan S; Heikkila JJ
    Comp Biochem Physiol A Mol Integr Physiol; 2014 Feb; 168():1-10. PubMed ID: 24231468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heat shock proteins: cell protection through protein triage.
    Lanneau D; Wettstein G; Bonniaud P; Garrido C
    ScientificWorldJournal; 2010 Aug; 10():1543-52. PubMed ID: 20694452
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of oxidized proteins by the proteasome: Distinguishing between the 20S, 26S, and immunoproteasome proteolytic pathways.
    Raynes R; Pomatto LC; Davies KJ
    Mol Aspects Med; 2016 Aug; 50():41-55. PubMed ID: 27155164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HSP70 Inhibition Leads to the Activation of Proteasomal System under Mild Hyperthermia Conditions in Young and Senescent Fibroblasts.
    Bozaykut P; Sozen E; Kaga E; Ece A; Ozaltin E; Bergquist J; Kartal Ozer N; Karademir Yilmaz B
    Oxid Med Cell Longev; 2020; 2020():9369524. PubMed ID: 32190179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins.
    Connell P; Ballinger CA; Jiang J; Wu Y; Thompson LJ; Höhfeld J; Patterson C
    Nat Cell Biol; 2001 Jan; 3(1):93-6. PubMed ID: 11146632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crosstalk between Hsp70 molecular chaperone, lysosomes and proteasomes in autophagy-mediated proteolysis in human retinal pigment epithelial cells.
    Ryhänen T; Hyttinen JM; Kopitz J; Rilla K; Kuusisto E; Mannermaa E; Viiri J; Holmberg CI; Immonen I; Meri S; Parkkinen J; Eskelinen EL; Uusitalo H; Salminen A; Kaarniranta K
    J Cell Mol Med; 2009 Sep; 13(9B):3616-31. PubMed ID: 19017362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The triage of damaged proteins: degradation by the ubiquitin-proteasome pathway or repair by molecular chaperones.
    Marques C; Guo W; Pereira P; Taylor A; Patterson C; Evans PC; Shang F
    FASEB J; 2006 Apr; 20(6):741-3. PubMed ID: 16469848
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Function of the 26S Proteasome.
    Bard JAM; Goodall EA; Greene ER; Jonsson E; Dong KC; Martin A
    Annu Rev Biochem; 2018 Jun; 87():697-724. PubMed ID: 29652515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stressing the ubiquitin-proteasome system without 20S proteolytic inhibition selectively kills cervical cancer cells.
    Anchoori RK; Khan SR; Sueblinvong T; Felthauser A; Iizuka Y; Gavioli R; Destro F; Isaksson Vogel R; Peng S; Roden RB; Bazzaro M
    PLoS One; 2011; 6(8):e23888. PubMed ID: 21909374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulating the 20S proteasome ubiquitin-independent degradation pathway.
    Ben-Nissan G; Sharon M
    Biomolecules; 2014 Sep; 4(3):862-84. PubMed ID: 25250704
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chaperoning proteins for destruction: diverse roles of Hsp70 chaperones and their co-chaperones in targeting misfolded proteins to the proteasome.
    Shiber A; Ravid T
    Biomolecules; 2014 Jul; 4(3):704-24. PubMed ID: 25036888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of protein turnover by heat shock proteins.
    Bozaykut P; Ozer NK; Karademir B
    Free Radic Biol Med; 2014 Dec; 77():195-209. PubMed ID: 25236750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.