These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 31029750)

  • 1. Synthesis, biological evaluation, and computational studies of novel fused six-membered O-containing heterocycles as potential acetylcholinesterase inhibitors.
    Pourshojaei Y; Abiri A; Eskandari R; Dourandish F; Eskandari K; Asadipour A
    Comput Biol Chem; 2019 Jun; 80():249-258. PubMed ID: 31029750
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, biological evaluation and molecular modeling of aloe-emodin derivatives as new acetylcholinesterase inhibitors.
    Shi DH; Huang W; Li C; Wang LT; Wang SF
    Bioorg Med Chem; 2013 Mar; 21(5):1064-73. PubMed ID: 23380475
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly functionalized 2-amino-4H-pyrans as potent cholinesterase inhibitors.
    Kumar RS; Almansour AI; Arumugam N; Al-Thamili DM; Basiri A; Kotresha D; Manohar TS; Venketesh S; Asad M; Asiri AM
    Bioorg Chem; 2018 Dec; 81():134-143. PubMed ID: 30121001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enantioselective synthesis of novel pyrano[3,2-c]chromene derivatives as AChE inhibitors via an organocatalytic domino reaction.
    Zheng J; He M; Xie B; Yang L; Hu Z; Zhou HB; Dong C
    Org Biomol Chem; 2018 Jan; 16(3):472-479. PubMed ID: 29265146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. One-pot four-component synthesis of thiazolidin-2-imines using Cu
    Shehzadi SA; Khan I; Saeed A; Larik FA; Channar PA; Hassan M; Raza H; Abbas Q; Seo SY
    Bioorg Chem; 2019 Mar; 84():518-528. PubMed ID: 30610971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis, structure-activity relationship and molecular docking of 3-oxoaurones and 3-thioaurones as acetylcholinesterase and butyrylcholinesterase inhibitors.
    Mughal EU; Sadiq A; Murtaza S; Rafique H; Zafar MN; Riaz T; Khan BA; Hameed A; Khan KM
    Bioorg Med Chem; 2017 Jan; 25(1):100-106. PubMed ID: 27780618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of α-oxycarbanilinophosphonates and their anticholinesterase activities: the most potent derivative is bound to the peripheral site of acetylcholinesterase.
    Kaboudin B; Emadi S; Faghihi MR; Fallahi M; Sheikh-Hasani V
    J Enzyme Inhib Med Chem; 2013 Jun; 28(3):576-82. PubMed ID: 22397393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis and in vitro evaluation of new derivatives of 2-substituted-6-fluorobenzo[d]thiazoles as cholinesterase inhibitors.
    Imramovský A; Pejchal V; Štěpánková Š; Vorčáková K; Jampílek J; Vančo J; Šimůnek P; Královec K; Brůčková L; Mandíková J; Trejtnar F
    Bioorg Med Chem; 2013 Apr; 21(7):1735-48. PubMed ID: 23462716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Design, facile synthesis, and evaluation of novel spiro- and pyrazolo[1,5-c]quinazolines as cholinesterase inhibitors: Molecular docking and MM/GBSA studies.
    Gálvez J; Polo S; Insuasty B; Gutiérrez M; Cáceres D; Alzate-Morales JH; De-la-Torre P; Quiroga J
    Comput Biol Chem; 2018 Jun; 74():218-229. PubMed ID: 29655025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis.
    Khan I; Ibrar A; Zaib S; Ahmad S; Furtmann N; Hameed S; Simpson J; Bajorath J; Iqbal J
    Bioorg Med Chem; 2014 Nov; 22(21):6163-73. PubMed ID: 25257911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modification of Bischler-Möhlau indole derivatives through palladium catalyzed Suzuki reaction as effective cholinesterase inhibitors, their kinetic and molecular docking studies.
    Parveen S; Shah MS; Zaib S; Gul T; Khan KM; Iqbal J; Hassan A
    Bioorg Chem; 2018 Feb; 76():166-176. PubMed ID: 29175588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acetylcholinesterase inhibitors: structure based design, synthesis, pharmacophore modeling, and virtual screening.
    Valasani KR; Chaney MO; Day VW; Shidu Yan S
    J Chem Inf Model; 2013 Aug; 53(8):2033-46. PubMed ID: 23777291
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis, in vitro acetylcholinesterase inhibitory activity and molecular docking of new acridine-coumarin hybrids.
    Hamulakova S; Janovec L; Soukup O; Jun D; Kuca K
    Int J Biol Macromol; 2017 Nov; 104(Pt A):333-338. PubMed ID: 28601645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis, Biological Evaluation and Molecular Modelling of 2'-Hydroxychalcones as Acetylcholinesterase Inhibitors.
    Sukumaran SD; Chee CF; Viswanathan G; Buckle MJ; Othman R; Abd Rahman N; Chung LY
    Molecules; 2016 Jul; 21(7):. PubMed ID: 27455222
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synthesis, biological activity and molecular modeling studies on 1H-benzimidazole derivatives as acetylcholinesterase inhibitors.
    Alpan AS; Parlar S; Carlino L; Tarikogullari AH; Alptüzün V; Güneş HS
    Bioorg Med Chem; 2013 Sep; 21(17):4928-37. PubMed ID: 23891231
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis, Characterization and Cholinesterase Inhibition Studies of New Arylidene Aminothiazolylethanone Derivatives.
    Channar PA; Shah MS; Saeed A; Khan SU; Larik FA; Shabir G; Iqbal J
    Med Chem; 2017; 13(7):648-653. PubMed ID: 28266279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regioselective synthesis, biological evaluation, and molecular docking of dihydropyrimidin-4-ols as acetylcholinesterase inhibitors.
    da Silva AMPW; da Silva FM; Nogara PA; Dutra EJM; Serres JDS; Saraiva RA; Piccoli BC; Oliveira CS; Schetinger MRC; Morsch VMM; Rocha JBT; Bonacorso HG; Martins MAP; Zanatta N
    Chem Biol Drug Des; 2017 Dec; 90(6):1161-1172. PubMed ID: 28581643
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quinolone-benzylpiperidine derivatives as novel acetylcholinesterase inhibitor and antioxidant hybrids for Alzheimer disease.
    Pudlo M; Luzet V; Ismaïli L; Tomassoli I; Iutzeler A; Refouvelet B
    Bioorg Med Chem; 2014 Apr; 22(8):2496-507. PubMed ID: 24657052
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis and anticholinesterase activity of new substituted benzo[d]oxazole-based derivatives.
    Pouramiri B; Moghimi S; Mahdavi M; Nadri H; Moradi A; Tavakolinejad-Kermani E; Firoozpour L; Asadipour A; Foroumadi A
    Chem Biol Drug Des; 2017 May; 89(5):783-789. PubMed ID: 27863021
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of molecular descriptors for design of novel Isoalloxazine derivatives as potential Acetylcholinesterase inhibitors against Alzheimer's disease.
    Gurung AB; Aguan K; Mitra S; Bhattacharjee A
    J Biomol Struct Dyn; 2017 Jun; 35(8):1729-1742. PubMed ID: 27410776
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.