BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31029942)

  • 1. Behavior, remediation effect and toxicity of nanomaterials in water environments.
    Zhu Y; Liu X; Hu Y; Wang R; Chen M; Wu J; Wang Y; Kang S; Sun Y; Zhu M
    Environ Res; 2019 Jul; 174():54-60. PubMed ID: 31029942
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Remediation of contaminated soils by enhanced nanoscale zero valent iron.
    Jiang D; Zeng G; Huang D; Chen M; Zhang C; Huang C; Wan J
    Environ Res; 2018 May; 163():217-227. PubMed ID: 29459304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Utilization of nanomaterials for in-situ remediation of heavy metal(loid) contaminated sediments: A review.
    Cai C; Zhao M; Yu Z; Rong H; Zhang C
    Sci Total Environ; 2019 Apr; 662():205-217. PubMed ID: 30690355
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nano-remediation technologies for the sustainable mitigation of persistent organic pollutants.
    Fei L; Bilal M; Qamar SA; Imran HM; Riasat A; Jahangeer M; Ghafoor M; Ali N; Iqbal HMN
    Environ Res; 2022 Aug; 211():113060. PubMed ID: 35283076
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of dominant material properties on the stability and transport of TiO2 nanoparticles and carbon nanotubes in aquatic environments: from synthesis to fate.
    Liu X; Chen G; Keller AA; Su C
    Environ Sci Process Impacts; 2013 Jan; 15(1):169-89. PubMed ID: 24592435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Remediation of heavy metals polluted environment using Fe-based nanoparticles: Mechanisms, influencing factors, and environmental implications.
    Latif A; Sheng D; Sun K; Si Y; Azeem M; Abbas A; Bilal M
    Environ Pollut; 2020 Sep; 264():114728. PubMed ID: 32408081
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance and toxicity assessment of nanoscale zero valent iron particles in the remediation of contaminated soil: A review.
    Xue W; Huang D; Zeng G; Wan J; Cheng M; Zhang C; Hu C; Li J
    Chemosphere; 2018 Nov; 210():1145-1156. PubMed ID: 30208540
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Environmental application and ecological significance of nano-zero valent iron.
    Yirsaw BD; Megharaj M; Chen Z; Naidu R
    J Environ Sci (China); 2016 Jun; 44():88-98. PubMed ID: 27266305
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Integration of nanoscale zero-valent iron and functional anaerobic bacteria for groundwater remediation: A review.
    Dong H; Li L; Lu Y; Cheng Y; Wang Y; Ning Q; Wang B; Zhang L; Zeng G
    Environ Int; 2019 Mar; 124():265-277. PubMed ID: 30660027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ecotoxicity testing and environmental risk assessment of iron nanomaterials for sub-surface remediation - Recommendations from the FP7 project NanoRem.
    Hjorth R; Coutris C; Nguyen NHA; Sevcu A; Gallego-Urrea JA; Baun A; Joner EJ
    Chemosphere; 2017 Sep; 182():525-531. PubMed ID: 28521168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring the reactivity of commercially available zero-valent iron nanoparticles used for environmental remediation with iopromide.
    Schmid D; Micić V; Laumann S; Hofmann T
    J Contam Hydrol; 2015 Oct; 181():36-45. PubMed ID: 25708601
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanotechnology in remediation of water contaminated by poly- and perfluoroalkyl substances: A review.
    Zhang W; Zhang D; Liang Y
    Environ Pollut; 2019 Apr; 247():266-276. PubMed ID: 30685667
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Environmental factors influencing remediation of TNT-contaminated water and soil with nanoscale zero-valent iron particles.
    Jiamjitrpanich W; Polprasert C; Parkpian P; Delaune RD; Jugsujinda A
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2010; 45(3):263-74. PubMed ID: 20390867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil.
    Peng D; Wu B; Tan H; Hou S; Liu M; Tang H; Yu J; Xu H
    Chemosphere; 2019 Aug; 228():44-53. PubMed ID: 31022619
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity of iron-based nanoparticles to green algae: Effects of particle size, crystal phase, oxidation state and environmental aging.
    Lei C; Zhang L; Yang K; Zhu L; Lin D
    Environ Pollut; 2016 Nov; 218():505-512. PubMed ID: 27449531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A review of the environmental implications of in situ remediation by nanoscale zero valent iron (nZVI): Behavior, transport and impacts on microbial communities.
    Lefevre E; Bossa N; Wiesner MR; Gunsch CK
    Sci Total Environ; 2016 Sep; 565():889-901. PubMed ID: 26897610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coupling interaction between porous biochar and nano zero valent iron/nano α-hydroxyl iron oxide improves the remediation efficiency of cadmium in aqueous solution.
    Zhu L; Tong L; Zhao N; Li J; Lv Y
    Chemosphere; 2019 Mar; 219():493-503. PubMed ID: 30551116
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The interactions between nanoscale zero-valent iron and microbes in the subsurface environment: A review.
    Xie Y; Dong H; Zeng G; Tang L; Jiang Z; Zhang C; Deng J; Zhang L; Zhang Y
    J Hazard Mater; 2017 Jan; 321():390-407. PubMed ID: 27669380
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Environmental benefits and risks of zero-valent iron nanoparticles (nZVI) for in situ remediation: risk mitigation or trade-off?
    Grieger KD; Fjordbøge A; Hartmann NB; Eriksson E; Bjerg PL; Baun A
    J Contam Hydrol; 2010 Nov; 118(3-4):165-83. PubMed ID: 20813426
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The application status, development and future trend of nano-iron materials in anaerobic digestion system.
    Li J; Li C; Zhao L; Pan X; Cai G; Zhu G
    Chemosphere; 2021 Apr; 269():129389. PubMed ID: 33385673
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.