BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31029942)

  • 21. Iron nanoparticles for environmental clean-up: recent developments and future outlook.
    Yan W; Lien HL; Koel BE; Zhang WX
    Environ Sci Process Impacts; 2013 Jan; 15(1):63-77. PubMed ID: 24592428
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples.
    Zhang L; Li J; Yang K; Liu J; Lin D
    Environ Pollut; 2016 Apr; 211():132-40. PubMed ID: 26745398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Environmental Remediation and Application of Nanoscale Zero-Valent Iron and Its Composites for the Removal of Heavy Metal Ions: A Review.
    Zou Y; Wang X; Khan A; Wang P; Liu Y; Alsaedi A; Hayat T; Wang X
    Environ Sci Technol; 2016 Jul; 50(14):7290-304. PubMed ID: 27331413
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Applications of Green Synthesized Nanomaterials in Water Remediation.
    Singh NB; B H Susan MA; Guin M
    Curr Pharm Biotechnol; 2021; 22(6):733-761. PubMed ID: 33109041
    [TBL] [Abstract][Full Text] [Related]  

  • 25. An overview of preparation and applications of stabilized zero-valent iron nanoparticles for soil and groundwater remediation.
    Zhao X; Liu W; Cai Z; Han B; Qian T; Zhao D
    Water Res; 2016 Sep; 100():245-266. PubMed ID: 27206054
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fe-C-based materials: synthesis modulation for the remediation of environmental pollutants-a review.
    Vega R; Rong R; Dai M; Ali I; Naz I; Peng C
    Environ Sci Pollut Res Int; 2022 Sep; 29(43):64345-64369. PubMed ID: 35849230
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Critical review of the characteristics, interactions, and toxicity of micro/nanomaterials pollutants in aquatic environments.
    López ADF; Fabiani M; Lassalle VL; Spetter CV; Severini MDF
    Mar Pollut Bull; 2022 Jan; 174():113276. PubMed ID: 35090270
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomaterials application for heavy metals recovery from polluted water: The combination of nano zero-valent iron and carbon nanotubes. Competitive adsorption non-linear modeling.
    Vilardi G; Mpouras T; Dermatas D; Verdone N; Polydera A; Di Palma L
    Chemosphere; 2018 Jun; 201():716-729. PubMed ID: 29547860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nanotechnology for the Environment and Medicine.
    Formoso P; Muzzalupo R; Tavano L; De Filpo G; Nicoletta FP
    Mini Rev Med Chem; 2016; 16(8):668-75. PubMed ID: 26955878
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The removal of chromium (VI) and lead (II) from groundwater using sepiolite-supported nanoscale zero-valent iron (S-NZVI).
    Fu R; Yang Y; Xu Z; Zhang X; Guo X; Bi D
    Chemosphere; 2015 Nov; 138():726-34. PubMed ID: 26267258
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluating the mobility of polymer-stabilised zero-valent iron nanoparticles and their potential to co-transport contaminants in intact soil cores.
    Chekli L; Brunetti G; Marzouk ER; Maoz-Shen A; Smith E; Naidu R; Shon HK; Lombi E; Donner E
    Environ Pollut; 2016 Sep; 216():636-645. PubMed ID: 27357483
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Recent trends in nanomaterials applications in environmental monitoring and remediation.
    Das S; Sen B; Debnath N
    Environ Sci Pollut Res Int; 2015 Dec; 22(23):18333-44. PubMed ID: 26490920
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A MD simulation and analysis for aggregation behaviors of nanoscale zero-valent iron particles in water via MS.
    Zhao Y; Liu D; Tang H; Lu J; Cui F
    ScientificWorldJournal; 2014; 2014():768780. PubMed ID: 25250388
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Degradation and transformation of engineering carbon nanomaterials in the environment: A review].
    Yue FN; Luo SM; Zhang CD
    Ying Yong Sheng Tai Xue Bao; 2013 Feb; 24(2):589-96. PubMed ID: 23705409
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances of nanomaterials for air pollution remediation and their impacts on the environment.
    Saleem H; Zaidi SJ; Ismail AF; Goh PS
    Chemosphere; 2022 Jan; 287(Pt 2):132083. PubMed ID: 34488054
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environmental transformations and ecological effects of iron-based nanoparticles.
    Lei C; Sun Y; Tsang DCW; Lin D
    Environ Pollut; 2018 Jan; 232():10-30. PubMed ID: 28966028
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biotechnology and nanotechnology for remediation of chlorinated volatile organic compounds: current perspectives.
    Ebrahimbabaie P; Pichtel J
    Environ Sci Pollut Res Int; 2021 Feb; 28(7):7710-7741. PubMed ID: 33403642
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A 3-dimensional micro- and nanoparticle transport and filtration model (MNM3D) applied to the migration of carbon-based nanomaterials in porous media.
    Bianco C; Tosco T; Sethi R
    J Contam Hydrol; 2016 Oct; 193():10-20. PubMed ID: 27607520
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zero-valent iron particles for PCB degradation and an evaluation of their effects on bacteria, plants, and soil organisms.
    Ševců A; El-Temsah YS; Filip J; Joner EJ; Bobčíková K; Černík M
    Environ Sci Pollut Res Int; 2017 Sep; 24(26):21191-21202. PubMed ID: 28733821
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A field investigation on transport of carbon-supported nanoscale zero-valent iron (nZVI) in groundwater.
    Busch J; Meißner T; Potthoff A; Bleyl S; Georgi A; Mackenzie K; Trabitzsch R; Werban U; Oswald SE
    J Contam Hydrol; 2015 Oct; 181():59-68. PubMed ID: 25864966
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.