BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 31029942)

  • 41. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Developments in the Application of Nanomaterials for Water Treatment and Their Impact on the Environment.
    Saleem H; Zaidi SJ
    Nanomaterials (Basel); 2020 Sep; 10(9):. PubMed ID: 32906594
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts.
    Machado S; Pacheco JG; Nouws HP; Albergaria JT; Delerue-Matos C
    Sci Total Environ; 2015 Nov; 533():76-81. PubMed ID: 26151651
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Carbon Nanomaterials for the Treatment of Heavy Metal-Contaminated Water and Environmental Remediation.
    Baby R; Saifullah B; Hussein MZ
    Nanoscale Res Lett; 2019 Nov; 14(1):341. PubMed ID: 31712991
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Transport of carbon colloid supported nanoscale zero-valent iron in saturated porous media.
    Busch J; Meißner T; Potthoff A; Oswald SE
    J Contam Hydrol; 2014 Aug; 164():25-34. PubMed ID: 24914524
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Remediation of arsenic from contaminated seawater using manganese spinel ferrite nanoparticles: Ecotoxicological evaluation in Mytilus galloprovincialis.
    Coppola F; Tavares DS; Henriques B; Monteiro R; Trindade T; Soares AMVM; Figueira E; Polese G; Pereira E; Freitas R
    Environ Res; 2019 Aug; 175():200-212. PubMed ID: 31136952
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transport characteristics of surface-modified nanoscale zero-valent iron in porous media.
    Kanel SR; Choi H
    Water Sci Technol; 2007; 55(1-2):157-62. PubMed ID: 17305135
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In-situ, Ex-situ, and nano-remediation strategies to treat polluted soil, water, and air - A review.
    Hussain A; Rehman F; Rafeeq H; Waqas M; Asghar A; Afsheen N; Rahdar A; Bilal M; Iqbal HMN
    Chemosphere; 2022 Feb; 289():133252. PubMed ID: 34902385
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Review of soluble uranium removal by nanoscale zero valent iron.
    Jing C; Li YL; Landsberger S
    J Environ Radioact; 2016 Nov; 164():65-72. PubMed ID: 27423075
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nanomaterials as a sustainable choice for treating wastewater.
    Ahmed SF; Mofijur M; Ahmed B; Mehnaz T; Mehejabin F; Maliat D; Hoang AT; Shafiullah GM
    Environ Res; 2022 Nov; 214(Pt 1):113807. PubMed ID: 35798266
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Coexistence of silver and titanium dioxide nanoparticles: enhancing or reducing environmental risks?
    Zou X; Shi J; Zhang H
    Aquat Toxicol; 2014 Sep; 154():168-75. PubMed ID: 24907921
    [TBL] [Abstract][Full Text] [Related]  

  • 52. In situ remediation of hexavalent chromium contaminated soil by CMC-stabilized nanoscale zero-valent iron composited with biochar.
    Zhang R; Zhang N; Fang Z
    Water Sci Technol; 2018 Mar; 77(5-6):1622-1631. PubMed ID: 29595164
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Impact of surface modification on the toxicity of zerovalent iron nanoparticles in aquatic and terrestrial organisms.
    Yoon H; Pangging M; Jang MH; Hwang YS; Chang YS
    Ecotoxicol Environ Saf; 2018 Nov; 163():436-443. PubMed ID: 30075446
    [TBL] [Abstract][Full Text] [Related]  

  • 54. DDT degradation efficiency and ecotoxicological effects of two types of nano-sized zero-valent iron (nZVI) in water and soil.
    El-Temsah YS; Sevcu A; Bobcikova K; Cernik M; Joner EJ
    Chemosphere; 2016 Feb; 144():2221-8. PubMed ID: 26598990
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparison of in situ sediment remediation amendments: Risk perspectives from species sensitivity distribution.
    Albarano L; Lofrano G; Costantini M; Zupo V; Carraturo F; Guida M; Libralato G
    Environ Pollut; 2021 Mar; 272():115995. PubMed ID: 33187838
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predicting the capability of carboxymethyl cellulose-stabilized iron nanoparticles for the remediation of arsenite from water using the response surface methodology (RSM) model: Modeling and optimization.
    Mohammadi A; Nemati S; Mosaferi M; Abdollahnejhad A; Almasian M; Sheikhmohammadi A
    J Contam Hydrol; 2017 Aug; 203():85-92. PubMed ID: 28709527
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The fate of iron nanoparticles in environmental waters treated with nanoscale zero-valent iron, FeONPs and Fe3O4NPs.
    Peeters K; Lespes G; Zuliani T; Ščančar J; Milačič R
    Water Res; 2016 May; 94():315-327. PubMed ID: 26971807
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Integrating NZVI and carbon substrates in a non-pumping reactive wells array for the remediation of a nitrate contaminated aquifer.
    Hosseini SM; Tosco T
    J Contam Hydrol; 2015 Aug; 179():182-95. PubMed ID: 26142547
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Nanoscale dispersing of zero-valent iron on CaCO
    Zhang X; Shi D; Li X; Zhang Y; Wang J; Fan J
    Chemosphere; 2019 Jun; 224():390-397. PubMed ID: 30831489
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Carbonate minerals in porous media decrease mobility of polyacrylic acid modified zero-valent iron nanoparticles used for groundwater remediation.
    Laumann S; Micić V; Lowry GV; Hofmann T
    Environ Pollut; 2013 Aug; 179():53-60. PubMed ID: 23644276
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.