These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

473 related articles for article (PubMed ID: 31030058)

  • 1. Scratching-induced surface characteristics and material removal mechanisms in rotary ultrasonic surface machining of CFRP.
    Wang H; Ning F; Li Y; Hu Y; Cong W
    Ultrasonics; 2019 Aug; 97():19-28. PubMed ID: 31030058
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rotary ultrasonic machining of CFRP: a mechanistic predictive model for cutting force.
    Cong WL; Pei ZJ; Sun X; Zhang CL
    Ultrasonics; 2014 Feb; 54(2):663-75. PubMed ID: 24120374
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A mechanistic ultrasonic vibration amplitude model during rotary ultrasonic machining of CFRP composites.
    Ning F; Wang H; Cong W; Fernando PKSC
    Ultrasonics; 2017 Apr; 76():44-51. PubMed ID: 28040629
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Rotary ultrasonic elliptical machining for side milling of CFRP: tool performance and surface integrity.
    Geng D; Zhang D; Xu Y; He F; Liu D; Duan Z
    Ultrasonics; 2015 May; 59():128-37. PubMed ID: 25708349
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rotary ultrasonic machining of CFRP: A comparison with grinding.
    Ning FD; Cong WL; Pei ZJ; Treadwell C
    Ultrasonics; 2016 Mar; 66():125-132. PubMed ID: 26614168
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Theoretical and experimental investigations on rotary ultrasonic surface micro-machining of brittle materials.
    Li Y; Zhang D; Wang H; Ye G; He R; Cong W
    Ultrason Sonochem; 2022 Sep; 89():106162. PubMed ID: 36113208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotary ultrasonic machining of CFRP composites: a study on power consumption.
    Cong WL; Pei ZJ; Deines TW; Srivastava A; Riley L; Treadwell C
    Ultrasonics; 2012 Dec; 52(8):1030-7. PubMed ID: 22986155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling of un-deformed chip thickness in RUM process and study of size effects in μ-RUM.
    Jain AK; Pandey PM
    Ultrasonics; 2017 May; 77():1-16. PubMed ID: 28167315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental investigation of the machining characteristics in diamond wire sawing of unidirectional CFRP.
    Seeholzer L; Süssmaier S; Kneubühler F; Wegener K
    Int J Adv Manuf Technol; 2021; 117(7-8):2197-2212. PubMed ID: 34759439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preliminary study on rotary ultrasonic machining of CFRP/Ti stacks.
    Cong WL; Pei ZJ; Treadwell C
    Ultrasonics; 2014 Aug; 54(6):1594-602. PubMed ID: 24768497
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High-frequency vibration effects on material removal mechanisms in ultrasonic transverse scratching of carbon fiber reinforced plastics.
    Lv D; Chen G; Liu D; Xu H; Chen M; Zhu Y; Ali I
    Ultrasonics; 2023 Jul; 132():106979. PubMed ID: 36924725
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Duty Cycle on Cutting Force for Ultrasonic Vibration-Assisted Milling Carbon Fiber-Reinforced Polymer Laminates.
    Zhang Y; Ren J; Zhou J
    Materials (Basel); 2023 Nov; 16(23):. PubMed ID: 38068202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of Cutting Force and the Material Removal Mechanism in the Ultrasonic Vibration-Assisted Scratching of 2D-SiCf/SiC Composites.
    Lin H; Zhou M; Wang H; Bai S
    Micromachines (Basel); 2023 Jun; 14(7):. PubMed ID: 37512659
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation on an Innovative Method for High-Speed Low-Damage Micro-Cutting of CFRP Composites with Diamond Dicing Blades.
    Yuan Z; Hu J; Wen Q; Cheng K; Zheng P
    Materials (Basel); 2018 Oct; 11(10):. PubMed ID: 30322166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The study on the nanomachining property and cutting model of single-crystal sapphire by atomic force microscopy.
    Huang JC; Weng YJ
    Scanning; 2014; 36(6):599-607. PubMed ID: 25241676
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ductile and brittle transition behavior of titanium alloys in ultra-precision machining.
    Yip WS; To S
    Sci Rep; 2018 Mar; 8(1):3934. PubMed ID: 29500386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of the ductile and brittle behavior of titanium alloys in diamond cutting by applying a magnetic field.
    Yip WS; To S
    Sci Rep; 2019 Mar; 9(1):4056. PubMed ID: 30858486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of the ductile machining mode of silicon.
    Klippel H; Süssmaier S; Röthlin M; Afrasiabi M; Pala U; Wegener K
    Int J Adv Manuf Technol; 2021; 115(5-6):1565-1578. PubMed ID: 34776579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigations on the critical feed rate guaranteeing the effectiveness of rotary ultrasonic machining.
    Wang J; Feng P; Zhang J; Cai W; Shen H
    Ultrasonics; 2017 Feb; 74():81-88. PubMed ID: 27750178
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation on the Surface Integrity of 40Cr Steel Machined by Rotary Ultrasonic Flank Milling.
    Zhu S; Sun Y; Wang F; Gong H
    Micromachines (Basel); 2024 Jan; 15(2):. PubMed ID: 38398918
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 24.