These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31030068)

  • 1. Microwave pretreatment power and duration time effects on the catalytic pyrolysis behaviors and kinetics of water hyacinth.
    Liang J; Yu Z; Chen L; Fang S; Ma X
    Bioresour Technol; 2019 Aug; 286():121369. PubMed ID: 31030068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of microwave pretreatment on catalytic fast pyrolysis of pine sawdust.
    Liang J; Xu X; Yu Z; Chen L; Liao Y; Ma X
    Bioresour Technol; 2019 Dec; 293():122080. PubMed ID: 31487617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomass valorization of Eichhornia crassipes root using thermogravimetric analysis.
    Pal DB; Tiwari AK; Srivastava N; Ahmad I; Abohashrh M; Gupta VK
    Environ Res; 2022 Nov; 214(Pt 4):114046. PubMed ID: 35998700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sustainable valorization of water hyacinth waste pollutant via pyrolysis for advance microbial fuel investigation.
    Pal DB; Tiwari AK; Prasad N; Syed A; Bahkali AH; Srivastava N; Singh RP; Gupta VK
    Chemosphere; 2023 Feb; 314():137602. PubMed ID: 36563719
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterisation of water hyacinth with microwave-heated alkali pretreatment for enhanced enzymatic digestibility and hydrogen/methane fermentation.
    Lin R; Cheng J; Song W; Ding L; Xie B; Zhou J; Cen K
    Bioresour Technol; 2015 Apr; 182():1-7. PubMed ID: 25668753
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of various types of thermal pretreatment techniques on the hydrolysis, compositional analysis and characterization of water hyacinth.
    Barua VB; Kalamdhad AS
    Bioresour Technol; 2017 Mar; 227():147-154. PubMed ID: 28013131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of catalytic effect on upgrading bio-oil derived from co-pyrolysis of water hyacinth and scrap tire over multilamellar MFI nanosheets and HZSM-5.
    Chen L; Ma X; Tang F; Li Y; Yu Z; Chen X
    Bioresour Technol; 2020 Sep; 312():123592. PubMed ID: 32531734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermo-kinetics and product analysis of the catalytic pyrolysis of Pongamia residual cake.
    Masawat N; Atong D; Sricharoenchaikul V
    J Environ Manage; 2019 Jul; 242():238-245. PubMed ID: 31048229
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Kinetics study on conventional and microwave pyrolysis of moso bamboo.
    Dong Q; Xiong Y
    Bioresour Technol; 2014 Nov; 171():127-31. PubMed ID: 25194260
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetics of the pyrolytic and hydrothermal decomposition of water hyacinth.
    Luo G; Strong PJ; Wang H; Ni W; Shi W
    Bioresour Technol; 2011 Jul; 102(13):6990-4. PubMed ID: 21558054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pyrolysis of water hyacinth in a fixed bed reactor: Parametric effects on product distribution, characterization and syngas evolutionary behavior.
    Rahman MA
    Waste Manag; 2018 Oct; 80():310-318. PubMed ID: 30455012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microwave-assisted catalytic pyrolysis of lignocellulosic biomass for production of phenolic-rich bio-oil.
    Mamaeva A; Tahmasebi A; Tian L; Yu J
    Bioresour Technol; 2016 Jul; 211():382-9. PubMed ID: 27030958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterizing and optimizing (co-)pyrolysis as a function of different feedstocks, atmospheres, blend ratios, and heating rates.
    Liu J; Huang L; Xie W; Kuo J; Buyukada M; Evrendilek F
    Bioresour Technol; 2019 Apr; 277():104-116. PubMed ID: 30660063
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physicochemical characteristics and pyrolysis performance of corn stalk torrefied in aqueous ammonia by microwave heating.
    Hu J; Jiang B; Wang J; Qiao Y; Zuo T; Sun Y; Jiang X
    Bioresour Technol; 2019 Feb; 274():83-88. PubMed ID: 30500767
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Production of bio-oil and biochar from soapstock via microwave-assisted co-catalytic fast pyrolysis.
    Dai L; Fan L; Liu Y; Ruan R; Wang Y; Zhou Y; Zhao Y; Yu Z
    Bioresour Technol; 2017 Feb; 225():1-8. PubMed ID: 27875763
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Analytical and microwave pyrolysis of empty oil palm fruit bunch: Kinetics and product characterization.
    Francis Prashanth P; Midhun Kumar M; Vinu R
    Bioresour Technol; 2020 Aug; 310():123394. PubMed ID: 32361644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A study on catalytic co-pyrolysis of kitchen waste with tire waste over ZSM-5 using TG-FTIR and Py-GC/MS.
    Chen J; Ma X; Yu Z; Deng T; Chen X; Chen L; Dai M
    Bioresour Technol; 2019 Oct; 289():121585. PubMed ID: 31207410
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermodynamics and Kinetics Parameters of Eichhornia crassipes Biomass for Bioenergy.
    Afzal I; Ahmad MS; Malik S; Ibrahim M; Al Ayed OS; Qadir G; Al Doghaither H; Gull M
    Protein Pept Lett; 2018; 25(2):187-194. PubMed ID: 29359651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancing bioethanol production from water hyacinth by new combined pretreatment methods.
    Zhang Q; Wei Y; Han H; Weng C
    Bioresour Technol; 2018 Mar; 251():358-363. PubMed ID: 29291533
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast microwave-assisted catalytic pyrolysis of sewage sludge for bio-oil production.
    Xie Q; Peng P; Liu S; Min M; Cheng Y; Wan Y; Li Y; Lin X; Liu Y; Chen P; Ruan R
    Bioresour Technol; 2014 Nov; 172():162-168. PubMed ID: 25260179
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.