These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31030145)

  • 21. Effect of hydraulic retention time on electricity generation using a solid plain-graphite plate microbial fuel cell anoxic/oxic process for treating pharmaceutical sewage.
    Chang TJ; Chang YH; Chao WL; Jane WN; Chang YT
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(13):1185-1197. PubMed ID: 30596323
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electricity generation using a baffled microbial fuel cell convenient for stacking.
    Li Z; Yao L; Kong L; Liu H
    Bioresour Technol; 2008 Apr; 99(6):1650-5. PubMed ID: 17532210
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of microbial fuel cell techniques into activated sludge wastewater treatment processes to improve nitrogen removal and reduce sludge production.
    Gajaraj S; Hu Z
    Chemosphere; 2014 Dec; 117():151-7. PubMed ID: 25014565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon Nanotube Composite Electrode Coated with Polypyrrole for Microbial Fuel Cell Application.
    Roh SH; Woo HG
    J Nanosci Nanotechnol; 2015 Jan; 15(1):484-7. PubMed ID: 26328387
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bacterial electroactivity and viability depends on the carbon nanotube-coated sponge anode used in a microbial fuel cell.
    Ma H; Xia T; Bian C; Sun H; Liu Z; Wu C; Wang X; Xu P
    Bioelectrochemistry; 2018 Aug; 122():26-31. PubMed ID: 29518621
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Enhanced performance of sulfate reducing bacteria based biocathode using stainless steel mesh on activated carbon fabric electrode.
    Sharma M; Jain P; Varanasi JL; Lal B; Rodríguez J; Lema JM; Sarma PM
    Bioresour Technol; 2013 Dec; 150():172-80. PubMed ID: 24161648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluating the suitability of tungsten, titanium and stainless steel wires as current collectors in microbial fuel cells.
    Sharma I; Ghangrekar MM
    Water Sci Technol; 2018 Feb; 77(3-4):999-1006. PubMed ID: 29488963
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Performance of microbial fuel cell in response to change in sludge loading rate at different anodic feed pH.
    Behera M; Ghangrekar MM
    Bioresour Technol; 2009 Nov; 100(21):5114-21. PubMed ID: 19539466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Improving performance of MFC by design alteration and adding cathodic electrolytes.
    Jadhav GS; Ghangrekar MM
    Appl Biochem Biotechnol; 2008 Dec; 151(2-3):319-32. PubMed ID: 18438635
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The effect of chemical vapor deposition temperature on the performance of binder-free sewage sludge-derived anodes in microbial fuel cells.
    Feng H; Jia Y; Shen D; Zhou Y; Chen T; Chen W; Ge Z; Zheng S; Wang M
    Sci Total Environ; 2018 Sep; 635():45-52. PubMed ID: 29660726
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioelectricity generation in microbial fuel cell using natural microflora and isolated pure culture bacteria from anaerobic palm oil mill effluent sludge.
    Nor MH; Mubarak MF; Elmi HSh; Ibrahim N; Wahab MF; Ibrahim Z
    Bioresour Technol; 2015 Aug; 190():458-65. PubMed ID: 25799955
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Layer-by-layer self-assembled carbon nanotube electrode for microbial fuel cells application.
    Roh SH
    J Nanosci Nanotechnol; 2013 Jun; 13(6):4158-61. PubMed ID: 23862465
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of enrichment procedures on performance and microbial diversity of microbial fuel cell for Congo red decolorization and electricity generation.
    Hou B; Sun J; Hu Y
    Appl Microbiol Biotechnol; 2011 May; 90(4):1563-72. PubMed ID: 21468708
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Increased power generation from primary sludge by a submersible microbial fuel cell and optimum operational conditions.
    Vologni V; Kakarla R; Angelidaki I; Min B
    Bioprocess Biosyst Eng; 2013 May; 36(5):635-42. PubMed ID: 23420478
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functionalized conductive activated carbon-polyaniline composite anode for augmented energy recovery in microbial fuel cells.
    Yellappa M; Annie Modestra J; Rami Reddy YV; Venkata Mohan S
    Bioresour Technol; 2021 Jan; 320(Pt B):124340. PubMed ID: 33189040
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell.
    Moon H; Chang IS; Kim BH
    Bioresour Technol; 2006 Mar; 97(4):621-7. PubMed ID: 15939588
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Three-dimensional carbon nanotube-textile anode for high-performance microbial fuel cells.
    Xie X; Hu L; Pasta M; Wells GF; Kong D; Criddle CS; Cui Y
    Nano Lett; 2011 Jan; 11(1):291-6. PubMed ID: 21158405
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Performance of a combined system of microbial fuel cell and membrane bioreactor: wastewater treatment, sludge reduction, energy recovery and membrane fouling.
    Su X; Tian Y; Sun Z; Lu Y; Li Z
    Biosens Bioelectron; 2013 Nov; 49():92-8. PubMed ID: 23722047
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Characteristic in electricity-generation and wastewater-treatment by the two-cylinder microbial fuel cells].
    Liang P; Huang X; Fan MZ; Cao XX; Cui Y
    Huan Jing Ke Xue; 2009 Feb; 30(2):616-20. PubMed ID: 19402525
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Medium-chain-length poly-3-hydroxyalkanoates-carbon nanotubes composite anode enhances the performance of microbial fuel cell.
    Hindatu Y; Annuar MSM; Subramaniam R; Gumel AM
    Bioprocess Biosyst Eng; 2017 Jun; 40(6):919-928. PubMed ID: 28341913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.