BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31030265)

  • 1. Impact of different elicitors on grapevine leaf metabolism monitored by 1H NMR spectroscopy.
    Burdziej A; Da Costa G; Gougeon L; Le Mao I; Bellée A; Corio-Costet MF; Mérillon JM; Richard T; Szakiel A; Cluzet S
    Metabolomics; 2019 Apr; 15(5):67. PubMed ID: 31030265
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methyl jasmonate induces defense responses in grapevine and triggers protection against Erysiphe necator.
    Belhadj A; Saigne C; Telef N; Cluzet S; Bouscaut J; Corio-Costet MF; Mérillon JM
    J Agric Food Chem; 2006 Nov; 54(24):9119-25. PubMed ID: 17117799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three Types of Elicitors Induce Grapevine Resistance against Downy Mildew via Common and Specific Immune Responses.
    Burdziej A; Bellée A; Bodin E; Valls Fonayet J; Magnin N; Szakiel A; Richard T; Cluzet S; Corio-Costet MF
    J Agric Food Chem; 2021 Feb; 69(6):1781-1795. PubMed ID: 33529021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Berry secondary metabolites and leaf physiological parameters are independently regulated by exogenous methyl jasmonate application in Sangiovese grapevines (Vitis vinifera L.).
    Palai G; D'Onofrio C
    Plant Physiol Biochem; 2024 Feb; 207():108378. PubMed ID: 38266562
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metabolomic analysis of primary metabolites in citrus leaf during defense responses.
    Asai T; Matsukawa T; Kajiyama S
    J Biosci Bioeng; 2017 Mar; 123(3):376-381. PubMed ID: 27789172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. beta-Aminobutyric acid-induced resistance against downy mildew in grapevine acts through the potentiation of callose formation and jasmonic acid signaling.
    Hamiduzzaman MM; Jakab G; Barnavon L; Neuhaus JM; Mauch-Mani B
    Mol Plant Microbe Interact; 2005 Aug; 18(8):819-29. PubMed ID: 16134894
    [TBL] [Abstract][Full Text] [Related]  

  • 7. LC-MS untargeted approach showed that methyl jasmonate application on Vitis labrusca L. grapes increases phenolics at subtropical Brazilian regions.
    Moro L; Da Ros A; da Mota RV; Purgatto E; Mattivi F; Arapitsas P
    Metabolomics; 2020 Jan; 16(2):18. PubMed ID: 31974665
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of methyl jasmonate application to grapevine leaves on grape amino acid content.
    Garde-Cerdán T; Portu J; López R; Santamaría P
    Food Chem; 2016 Jul; 203():536-539. PubMed ID: 26948648
    [TBL] [Abstract][Full Text] [Related]  

  • 9. NMR metabolomics of esca disease-affected Vitis vinifera cv. Alvarinho leaves.
    Lima MR; Felgueiras ML; Graça G; Rodrigues JE; Barros A; Gil AM; Dias AC
    J Exp Bot; 2010 Sep; 61(14):4033-42. PubMed ID: 20709726
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low concentrations of salicylic acid delay methyl jasmonate-induced leaf senescence by up-regulating nitric oxide synthase activity.
    Ji Y; Liu J; Xing D
    J Exp Bot; 2016 Sep; 67(17):5233-45. PubMed ID: 27440938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interactions between the jasmonic and salicylic acid pathway modulate the plant metabolome and affect herbivores of different feeding types.
    Schweiger R; Heise AM; Persicke M; Müller C
    Plant Cell Environ; 2014 Jul; 37(7):1574-85. PubMed ID: 24372400
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Metabolomic Response to Huanglongbing: Role of Carboxylic Compounds in Citrus sinensis Response to 'Candidatus Liberibacter asiaticus' and Its Vector, Diaphorina citri.
    Killiny N; Nehela Y
    Mol Plant Microbe Interact; 2017 Aug; 30(8):666-678. PubMed ID: 28510485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Jasmonate-Elicited Stress Induces Metabolic Change in the Leaves of Leucaena leucocephala.
    Xu Y; Tao Z; Jin Y; Chen S; Zhou Z; Gong AGW; Yuan Y; Dong TTX; Tsim KWK
    Molecules; 2018 Jan; 23(2):. PubMed ID: 29364191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A stilbene synthase allele from a Chinese wild grapevine confers resistance to powdery mildew by recruiting salicylic acid signalling for efficient defence.
    Jiao Y; Xu W; Duan D; Wang Y; Nick P
    J Exp Bot; 2016 Oct; 67(19):5841-5856. PubMed ID: 27702992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DIGE analysis of proteome changes accompanying large resveratrol production by grapevine (Vitis vinifera cv. Gamay) cell cultures in response to methyl-β-cyclodextrin and methyl jasmonate elicitors.
    Martinez-Esteso MJ; Sellés-Marchart S; Vera-Urbina JC; Pedreño MA; Bru-Martinez R
    J Proteomics; 2011 Aug; 74(8):1421-36. PubMed ID: 21426946
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of light, phenylalanine and methyl jasmonate, alone or in combination, on growth and secondary metabolism in cell suspension cultures of Vitis vinifera.
    Andi SA; Gholami M; Ford CM; Maskani F
    J Photochem Photobiol B; 2019 Oct; 199():111625. PubMed ID: 31610430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular cloning and characterization of a grapevine (Vitis vinifera L.) serotonin N-acetyltransferase (VvSNAT2) gene involved in plant defense.
    Yu Y; Bian L; Jiao Z; Yu K; Wan Y; Zhang G; Guo D
    BMC Genomics; 2019 Nov; 20(1):880. PubMed ID: 31747891
    [TBL] [Abstract][Full Text] [Related]  

  • 18. NMR metabolic fingerprinting based identification of grapevine metabolites associated with downy mildew resistance.
    Ali K; Maltese F; Zyprian E; Rex M; Choi YH; Verpoorte R
    J Agric Food Chem; 2009 Oct; 57(20):9599-606. PubMed ID: 19785416
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Candidate genes for grape white rot resistance based on SMRT and Illumina sequencing.
    Su K; Guo Y; Zhao Y; Gao H; Liu Z; Li K; Ma L; Guo X
    BMC Plant Biol; 2019 Nov; 19(1):501. PubMed ID: 31729958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metabolomic fingerprinting as a tool for authentication of grapevine (Vitis vinifera L.) biomass used in food production.
    Stranska M; Uttl L; Bechynska K; Hurkova K; Behner A; Hajslova J
    Food Chem; 2021 Nov; 361():130166. PubMed ID: 34058658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.