These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 31030280)

  • 1. Neuromechanical control of leg length and orientation in children and adults during single-leg hopping.
    Beerse M; Wu J
    Exp Brain Res; 2019 Jul; 237(7):1745-1757. PubMed ID: 31030280
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromechanical stabilization of leg length and orientation through interjoint compensation during human hopping.
    Auyang AG; Yen JT; Chang YH
    Exp Brain Res; 2009 Jan; 192(2):253-64. PubMed ID: 18839158
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of a foot placement constraint on use of motor equivalence during human hopping.
    Auyang AG; Chang YH
    PLoS One; 2013; 8(7):e69429. PubMed ID: 23936013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparison of whole-body vertical stiffness and leg stiffness during single-leg hopping in place in children and adults.
    Beerse M; Wu J
    J Biomech; 2017 May; 56():71-75. PubMed ID: 28318604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task.
    Scholz JP; Reisman D; Schöner G
    Exp Brain Res; 2001 Dec; 141(4):485-500. PubMed ID: 11810142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uncontrolled manifold hypothesis: Organization of leg joint variance in humans while walking in a wide range of speeds.
    Monaco V; Tropea P; Rinaldi LA; Micera S
    Hum Mov Sci; 2018 Feb; 57():227-235. PubMed ID: 28939197
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Individuals with patellofemoral pain syndrome have altered inter-leg force coordination.
    Liew BXW; Abichandani D; De Nunzio AM
    Gait Posture; 2020 Jun; 79():65-70. PubMed ID: 32361127
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Vertical stiffness and balance control of two-legged hopping in-place in children with and without Down syndrome.
    Beerse M; Wu J
    Gait Posture; 2018 Jun; 63():39-45. PubMed ID: 29705521
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vertical stiffness and center-of-mass movement in children and adults during single-leg hopping.
    Beerse M; Wu J
    J Biomech; 2016 Oct; 49(14):3306-3312. PubMed ID: 27575778
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Center of mass control and multi-segment coordination in children during quiet stance.
    Wu J; McKay S; Angulo-Barroso R
    Exp Brain Res; 2009 Jul; 196(3):329-39. PubMed ID: 19484228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint coordination during quiet stance: effects of vision.
    Krishnamoorthy V; Yang JF; Scholz JP
    Exp Brain Res; 2005 Jul; 164(1):1-17. PubMed ID: 15841397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control strategy for stabilizing force with goal-equivalent joint torques is frequency-dependent during human hopping.
    Yen JT; Chang YH
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2115-8. PubMed ID: 19964783
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changing one's focus of attention alters the structure of movement variability.
    Fietzer AL; Winstein CJ; Kulig K
    Hum Mov Sci; 2018 Dec; 62():14-24. PubMed ID: 30218846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Differentiating Successful and Unsuccessful Single-Leg Drop Landing Performance Using Uncontrolled Manifold Analysis.
    DiCesare CA; Bonnette S; Myer GD; Kiefer AW
    Motor Control; 2020 Jan; 24(1):75-90. PubMed ID: 31323641
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neuromechanical stabilisation of the centre of mass during running.
    Liew BXW; Rügamer D; Birn-Jeffery AV
    Gait Posture; 2024 Feb; 108():189-194. PubMed ID: 38103324
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of postural control in healthy children: a functional approach.
    Assaiante C; Mallau S; Viel S; Jover M; Schmitz C
    Neural Plast; 2005; 12(2-3):109-18; discussion 263-72. PubMed ID: 16097479
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of a kinematic coordination pattern in toddler locomotion: planar covariation.
    Cheron G; Bouillot E; Dan B; Bengoetxea A; Draye JP; Lacquaniti F
    Exp Brain Res; 2001 Apr; 137(3-4):455-66. PubMed ID: 11355390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Muscle synergies involved in shifting the center of pressure while making a first step.
    Wang Y; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2005 Nov; 167(2):196-210. PubMed ID: 16034579
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordination dynamics of hopping on a mini-trampoline in adults and children.
    Beerse M; Wu J
    Gait Posture; 2021 Feb; 84():175-181. PubMed ID: 33341464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Learning multi-finger synergies: an uncontrolled manifold analysis.
    Kang N; Shinohara M; Zatsiorsky VM; Latash ML
    Exp Brain Res; 2004 Aug; 157(3):336-50. PubMed ID: 15042264
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.