These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 31030319)

  • 1. Cultural ecosystem services provided by flowering of cherry trees under climate change: a case study of the relationship between the periods of flowering and festivals.
    Nagai S; Saitoh TM; Yoshitake S
    Int J Biometeorol; 2019 Aug; 63(8):1051-1058. PubMed ID: 31030319
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Vulnerability of the northern Mongolian steppe to climate change: insights from flower production and phenology.
    Liancourt P; Spence LA; Boldgiv B; Lkhagva A; Helliker BR; Casper BB; Petraitis PS
    Ecology; 2012 Apr; 93(4):815-24. PubMed ID: 22690632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling daily flowering probabilities: expected impact of climate change on Japanese cherry phenology.
    Allen JM; Terres MA; Katsuki T; Iwamoto K; Kobori H; Higuchi H; Primack RB; Wilson AM; Gelfand A; Silander JA
    Glob Chang Biol; 2014 Apr; 20(4):1251-63. PubMed ID: 23966290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does global warming decrease the correlation between cherry blossom flowering date and latitude in Japan?
    Nagai S; Saitoh TM; Morimoto H
    Int J Biometeorol; 2020 Dec; 64(12):2205-2210. PubMed ID: 32892239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting the timing of cherry blossoms in Washington, DC and Mid-Atlantic States in response to climate change.
    Chung U; Mack L; Yun JI; Kim SH
    PLoS One; 2011; 6(11):e27439. PubMed ID: 22087317
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Warming acts through earlier snowmelt to advance but not extend alpine community flowering.
    Jabis MD; Winkler DE; Kueppers LM
    Ecology; 2020 Sep; 101(9):e03108. PubMed ID: 32455489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simple method to detect year-to-year variability of blooming phenology of Cerasus × yedoensis by digital camera.
    Nagai S; Ikeda K; Kobayashi H
    Int J Biometeorol; 2018 Dec; 62(12):2183-2188. PubMed ID: 30259108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of winter chilling vs. spring forcing on the spring phenology of trees in a cold region and a warmer reference region.
    Yang Y; Wu Z; Guo L; He HS; Ling Y; Wang L; Zong S; Na R; Du H; Li MH
    Sci Total Environ; 2020 Jul; 725():138323. PubMed ID: 32298892
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature alone does not explain phenological variation of diverse temperate plants under experimental warming.
    Marchin RM; Salk CF; Hoffmann WA; Dunn RR
    Glob Chang Biol; 2015 Aug; 21(8):3138-51. PubMed ID: 25736981
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monitoring of cherry flowering phenology with Google Trends.
    Shin N; Kotani A; Tei S; Tsutsumida N
    PLoS One; 2022; 17(7):e0271648. PubMed ID: 35862347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reproducing under a warming climate: long winter flowering and extended flower longevity in the only Mediterranean and maritime Primula.
    Aronne G; Buonanno M; De Micco V
    Plant Biol (Stuttg); 2015 Mar; 17(2):535-44. PubMed ID: 25294217
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Micro-climatic controls and warming effects on flowering time in alpine snowbeds.
    Carbognani M; Bernareggi G; Perucco F; Tomaselli M; Petraglia A
    Oecologia; 2016 Oct; 182(2):573-85. PubMed ID: 27299914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spring- and fall-flowering species show diverging phenological responses to climate in the Southeast USA.
    Pearson KD
    Int J Biometeorol; 2019 Apr; 63(4):481-492. PubMed ID: 30734127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limited alpine climatic warming and modeled phenology advancement for three alpine species in the Northeast United States.
    Kimball KD; Davis ML; Weihrauch DM; Murray GL; Rancourt K
    Am J Bot; 2014 Sep; 101(9):1437-46. PubMed ID: 25253704
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phenological mismatch with abiotic conditions implications for flowering in Arctic plants.
    Wheeler HC; Høye TT; Schmidt NM; Svenning JC; Forchhammer MC
    Ecology; 2015 Mar; 96(3):775-87. PubMed ID: 26236873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased variance in temperature and lag effects alter phenological responses to rapid warming in a subarctic plant community.
    Mulder CP; Iles DT; Rockwell RF
    Glob Chang Biol; 2017 Feb; 23(2):801-814. PubMed ID: 27273120
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenological advance in the South African Namaqualand Daisy First and Peak Bloom: 1935-2018.
    Snyman PL; Fitchett JM
    Int J Biometeorol; 2022 Apr; 66(4):699-717. PubMed ID: 34994844
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contrasting effects of warming and increased snowfall on Arctic tundra plant phenology over the past two decades.
    Bjorkman AD; Elmendorf SC; Beamish AL; Vellend M; Henry GH
    Glob Chang Biol; 2015 Dec; 21(12):4651-61. PubMed ID: 26216538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Diverging models introduce large uncertainty in future climate warming impact on spring phenology of temperate deciduous trees.
    Zhao H; Fu YH; Wang X; Zhang Y; Liu Y; Janssens IA
    Sci Total Environ; 2021 Feb; 757():143903. PubMed ID: 33316528
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Citizen Science: linking the recent rapid advances of plant flowering in Canada with climate variability.
    Gonsamo A; Chen JM; Wu C
    Sci Rep; 2013; 3():2239. PubMed ID: 23867863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.