These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 31030336)

  • 21. Single-molecule measurements of the binding between small molecules and DNA aptamers.
    Yangyuoru PM; Dhakal S; Yu Z; Koirala D; Mwongela SM; Mao H
    Anal Chem; 2012 Jun; 84(12):5298-303. PubMed ID: 22702719
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Structural and molecular basis for hyperspecificity of RNA aptamer to human immunoglobulin G.
    Miyakawa S; Nomura Y; Sakamoto T; Yamaguchi Y; Kato K; Yamazaki S; Nakamura Y
    RNA; 2008 Jun; 14(6):1154-63. PubMed ID: 18441054
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aptamers with fluorescence-signaling properties.
    Nutiu R; Li Y
    Methods; 2005 Sep; 37(1):16-25. PubMed ID: 16199173
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-molecule observations of RNA-RNA kissing interactions in a DNA nanostructure.
    Takeuchi Y; Endo M; Suzuki Y; Hidaka K; Durand G; Dausse E; Toulmé JJ; Sugiyama H
    Biomater Sci; 2016 Jan; 4(1):130-5. PubMed ID: 26438892
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Salt-mediated two-site ligand binding by the cocaine-binding aptamer.
    Neves MAD; Slavkovic S; Churcher ZR; Johnson PE
    Nucleic Acids Res; 2017 Feb; 45(3):1041-1048. PubMed ID: 28025391
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Computational Modeling of RNA Aptamers: Structure Prediction of the Apo State.
    Yan S; Ilgu M; Nilsen-Hamilton M; Lamm MH
    J Phys Chem B; 2022 Sep; 126(37):7114-7125. PubMed ID: 36097649
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Common Secondary and Tertiary Structural Features of Aptamer-Ligand Interaction Shared by RNA Aptamers with Different Primary Sequences.
    Ilgu M; Yan S; Khounlo RM; Lamm MH; Nilsen-Hamilton M
    Molecules; 2019 Dec; 24(24):. PubMed ID: 31835789
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Aptamers targeting RNA molecules.
    Watrin M; Dausse E; Lebars I; Rayner B; Bugaut A; Toulmé JJ
    Methods Mol Biol; 2009; 535():79-105. PubMed ID: 19377979
    [TBL] [Abstract][Full Text] [Related]  

  • 29. NMR chemical exchange as a probe for ligand-binding kinetics in a theophylline-binding RNA aptamer.
    Latham MP; Zimmermann GR; Pardi A
    J Am Chem Soc; 2009 Apr; 131(14):5052-3. PubMed ID: 19317486
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quinine binding by the cocaine-binding aptamer. Thermodynamic and hydrodynamic analysis of high-affinity binding of an off-target ligand.
    Reinstein O; Yoo M; Han C; Palmo T; Beckham SA; Wilce MC; Johnson PE
    Biochemistry; 2013 Dec; 52(48):8652-62. PubMed ID: 24175947
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Facile characterization of aptamer kinetic and equilibrium binding properties using surface plasmon resonance.
    Chang AL; McKeague M; Smolke CD
    Methods Enzymol; 2014; 549():451-66. PubMed ID: 25432760
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigations on the interface of nucleic acid aptamers and binding targets.
    Cai S; Yan J; Xiong H; Liu Y; Peng D; Liu Z
    Analyst; 2018 Nov; 143(22):5317-5338. PubMed ID: 30357118
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ultrafast dynamics show that the theophylline and 3-methylxanthine aptamers employ a conformational capture mechanism for binding their ligands.
    Lee SW; Zhao L; Pardi A; Xia T
    Biochemistry; 2010 Apr; 49(13):2943-51. PubMed ID: 20214401
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Entropy and Mg2+ control ligand affinity and specificity in the malachite green binding RNA aptamer.
    Bernard Da Costa J; Dieckmann T
    Mol Biosyst; 2011 Jul; 7(7):2156-63. PubMed ID: 21523267
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution structure of a truncated anti-MUC1 DNA aptamer determined by mesoscale modeling and NMR.
    Baouendi M; Cognet JA; Ferreira CS; Missailidis S; Coutant J; Piotto M; Hantz E; Hervé du Penhoat C
    FEBS J; 2012 Feb; 279(3):479-90. PubMed ID: 22129448
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RAID3--An interleukin-6 receptor-binding aptamer with post-selective modification-resistant affinity.
    Mittelberger F; Meyer C; Waetzig GH; Zacharias M; Valentini E; Svergun DI; Berg K; Lorenzen I; Grötzinger J; Rose-John S; Hahn U
    RNA Biol; 2015; 12(9):1043-53. PubMed ID: 26383776
    [TBL] [Abstract][Full Text] [Related]  

  • 37. NMR monitoring of the SELEX process to confirm enrichment of structured RNA.
    Amano R; Aoki K; Miyakawa S; Nakamura Y; Kozu T; Kawai G; Sakamoto T
    Sci Rep; 2017 Mar; 7(1):283. PubMed ID: 28325909
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR resonance assignments for the SAM/SAH-binding riboswitch RNA bound to S-adenosylhomocysteine.
    Weickhmann AK; Keller H; Duchardt-Ferner E; Strebitzer E; Juen MA; Kremser J; Wurm JP; Kreutz C; Wöhnert J
    Biomol NMR Assign; 2018 Oct; 12(2):329-334. PubMed ID: 30051308
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Thermodynamic analysis of cooperative ligand binding by the ATP-binding DNA aptamer indicates a population-shift binding mechanism.
    Slavkovic S; Zhu Y; Churcher ZR; Shoara AA; Johnson AE; Johnson PE
    Sci Rep; 2020 Nov; 10(1):18944. PubMed ID: 33144644
    [TBL] [Abstract][Full Text] [Related]  

  • 40. RNA aptamers directed to discrete functional sites on a single protein structural domain.
    Shi H; Fan X; Sevilimedu A; Lis JT
    Proc Natl Acad Sci U S A; 2007 Mar; 104(10):3742-6. PubMed ID: 17360423
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.