These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 31030371)

  • 1. Electronic Properties of Armchair Black Phosphorene Nanoribbons Edge-Modified by Transition Elements V, Cr, and Mn.
    Huang JH; Wang XF; Liu YS; Zhou LP
    Nanoscale Res Lett; 2019 Apr; 14(1):145. PubMed ID: 31030371
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface engineering of phosphorene nanoribbons by transition metal heteroatoms for spintronics.
    Dong MM; Wang ZQ; Zhang GP; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Feb; 21(9):4879-4887. PubMed ID: 30778495
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of electronic and magnetic properties of edge hydrogenated armchair phosphorene nanoribbons by transition metal adsorption.
    Rao YC; Zhang P; Li SF; Duan XM; Wei SH
    Phys Chem Chem Phys; 2018 May; 20(18):12916-12922. PubMed ID: 29701208
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Manipulation of Magnetic State in Armchair Black Phosphorene Nanoribbon by Charge Doping.
    Farooq MU; Hashmi A; Hong J
    ACS Appl Mater Interfaces; 2015 Jul; 7(26):14423-30. PubMed ID: 26076899
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modulation of electronic transport properties in armchair phosphorene nanoribbons by doping and edge passivation.
    Guo C; Wang T; Xia C; Liu Y
    Sci Rep; 2017 Oct; 7(1):12799. PubMed ID: 28993688
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface decoration of phosphorene nanoribbons with 4d transition metal atoms for spintronics.
    Fu XX; Niu Y; Hao ZW; Dong MM; Wang CK
    Phys Chem Chem Phys; 2020 Jul; 22(28):16063-16071. PubMed ID: 32633289
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modulating the electronic structures of blue phosphorene towards spintronics.
    Lu XQ; Wang CK; Fu XX
    Phys Chem Chem Phys; 2019 Jun; 21(22):11755-11763. PubMed ID: 31114815
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analytical study on strain tunable electronic structure and optical transitions in armchair black phosphorene nanoribbons.
    Liu P; Zhou X; Xiao X; Zhou B; Zhou G
    J Phys Condens Matter; 2020 Jul; 32(28):285301. PubMed ID: 32150733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electronic Structure and I-V Characteristics of InSe Nanoribbons.
    Yao AL; Wang XF; Liu YS; Sun YN
    Nanoscale Res Lett; 2018 Apr; 13(1):107. PubMed ID: 29671093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spin-dependent transport properties of zigzag phosphorene nanoribbons with oxygen-saturated edges.
    Rahman M; Zhou KC; Xia QL; Nie YZ; Guo GH
    Phys Chem Chem Phys; 2017 Sep; 19(37):25319-25323. PubMed ID: 28890956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Half-metallic and magnetic semiconducting behaviors of metal-doped blue phosphorus nanoribbons from first-principles calculations.
    Zhu SC; Yip CT; Peng SJ; Wu KM; Yao KL; Mak CL; Lam CH
    Phys Chem Chem Phys; 2018 Mar; 20(11):7635-7642. PubMed ID: 29497734
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electronic and Spintronic Properties of Armchair MoSi
    Su XQ; Wang XF
    Nanomaterials (Basel); 2023 Feb; 13(4):. PubMed ID: 36839044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Even-odd effect of spin-dependent transport and thermoelectric properties for ferromagnetic zigzag phosphorene nanoribbons under an electric field.
    Zhou B; Yuan J; Zhou X; Zhou B
    J Phys Condens Matter; 2020 Aug; 32(43):. PubMed ID: 32668426
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of spin-orbit coupling on transmission and absorption of electromagnetic waves in strained armchair phosphorene nanoribbons.
    Rezania H; Abdi M; Nourian E; Astinchap B
    RSC Adv; 2023 Jul; 13(32):22287-22301. PubMed ID: 37492510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modulation of the electronic properties and spin polarization of 2H VS
    Zhao R; Wang T; Zhao M; Xia C; An Y; Dai X
    Phys Chem Chem Phys; 2019 Aug; 21(33):18211-18218. PubMed ID: 31389926
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ferromagnetism controlled by electric field in tilted phosphorene nanoribbon.
    Farooq MU; Hashmi A; Hong J
    Sci Rep; 2016 May; 6():26300. PubMed ID: 27189417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorene nanoribbon as a promising candidate for thermoelectric applications.
    Zhang J; Liu HJ; Cheng L; Wei J; Liang JH; Fan DD; Shi J; Tang XF; Zhang QJ
    Sci Rep; 2014 Sep; 4():6452. PubMed ID: 25245326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The spin-polarized edge states of blue phosphorene nanoribbons induced by electric field and electron doping.
    Zhang S; Li Y; Wang YP; Li J; Li M; Long M
    J Phys Condens Matter; 2021 Mar; 33(10):105302. PubMed ID: 33237880
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Half metal phase in the zigzag phosphorene nanoribbon.
    Ren Y; Cheng F; Zhang ZH; Zhou G
    Sci Rep; 2018 Feb; 8(1):2932. PubMed ID: 29440692
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structures, transport properties, and optical absorption of bilayer blue phosphorene nanoribbons.
    Gong LJ; Shi HL; Yang J; Han QZ; Ren YH; He SY; Zhao YH; Jiang ZT
    Phys Chem Chem Phys; 2023 Aug; 25(33):22487-22496. PubMed ID: 37581353
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.