BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31030541)

  • 21. Can we use indoor fungi as bioindicators of indoor air quality? Historical perspectives and open questions.
    Cabral JP
    Sci Total Environ; 2010 Sep; 408(20):4285-95. PubMed ID: 20655574
    [TBL] [Abstract][Full Text] [Related]  

  • 22. On-site investigation of the concentration and size distribution characteristics of airborne fungi in a university library.
    Wu D; Zhang Y; Tian Y; Li A; Li Y; Xiong J; Gao R
    Environ Pollut; 2020 Jun; 261():114138. PubMed ID: 32113104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Relation of indoor and outdoor airborne fungal spore levels in the Kansas City metropolitan area.
    Jara D; Portnoy J; Dhar M; Barnes C
    Allergy Asthma Proc; 2017 Mar; 38(2):130-135. PubMed ID: 28234050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Seasonality in airborne bacterial, fungal, and (1→3)-β-D-glucan concentrations in two indoor laboratory animal rooms.
    Hwang S; Ko Y; Park D; Yoon C
    J Clin Pathol; 2018 Jan; 71(1):59-66. PubMed ID: 28667192
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Verifying interpretive criteria for bioaerosol data using (bootstrap) Monte Carlo techniques.
    Spicer RC; Gangloff H
    J Occup Environ Hyg; 2008 Feb; 5(2):85-93. PubMed ID: 18075881
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A hybrid air quality early-warning framework: An hourly forecasting model with online sequential extreme learning machines and empirical mode decomposition algorithms.
    Sharma E; Deo RC; Prasad R; Parisi AV
    Sci Total Environ; 2020 Mar; 709():135934. PubMed ID: 31869708
    [TBL] [Abstract][Full Text] [Related]  

  • 27. [Indoor and outdoor fungal flora of Ankara].
    Yuluğ N; Kuştimur S
    Mikrobiyol Bul; 1977 Jul; 11(3):355-64. PubMed ID: 927227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Advanced machine learning model for better prediction accuracy of soil temperature at different depths.
    Alizamir M; Kisi O; Ahmed AN; Mert C; Fai CM; Kim S; Kim NW; El-Shafie A
    PLoS One; 2020; 15(4):e0231055. PubMed ID: 32287272
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Primary research on indoor air concentration of particulate matter in residential house and its relationship with ambient pollution level].
    Zhang Y; Li XY; Jiang LJ; Wei JR; Sheng X; Liu Y; Guo X
    Wei Sheng Yan Jiu; 2005 Jul; 34(4):407-9. PubMed ID: 16229259
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Use of temporal/seasonal- and size-dependent bioaerosol data to characterize the contribution of outdoor fungi to residential exposures.
    Liao CM; Luo WC
    Sci Total Environ; 2005 Jul; 347(1-3):78-97. PubMed ID: 16084969
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The composition of microbial aerosols, PM2.5, and PM10 in a duck house in Shandong province, China.
    Wu B; Qin L; Wang M; Zhou T; Dong Y; Chai T
    Poult Sci; 2019 Nov; 98(11):5913-5924. PubMed ID: 31237328
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessment of workers' exposure to bioaerosols in a French cheese factory.
    Simon X; Duquenne P
    Ann Occup Hyg; 2014 Jul; 58(6):677-92. PubMed ID: 24812257
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Indoor air quality in two urban elementary schools--measurements of airborne fungi, carpet allergens, CO2, temperature, and relative humidity.
    Ramachandran G; Adgate JL; Banerjee S; Church TR; Jones D; Fredrickson A; Sexton K
    J Occup Environ Hyg; 2005 Nov; 2(11):553-66. PubMed ID: 16223714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Indoor Air Quality in the Metro System in North Taiwan.
    Chen YY; Sung FC; Chen ML; Mao IF; Lu CY
    Int J Environ Res Public Health; 2016 Dec; 13(12):. PubMed ID: 27918460
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A comparative study on arsenic fractions in indoor/outdoor particulate matters: a case in Baoding, China.
    He KQ; Yuan CG; Yin LQ; Zhang KG; Xu PY; Xie JJ; Shen YW
    Environ Monit Assess; 2019 Jul; 191(8):528. PubMed ID: 31367959
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioaerosols in residential micro-environments in low income countries: a case study from Pakistan.
    Nasir ZA; Colbeck I; Sultan S; Ahmed S
    Environ Pollut; 2012 Sep; 168():15-22. PubMed ID: 22584111
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evaluation and a predictive model of airborne fungal concentrations in school classrooms.
    Bartlett KH; Kennedy SM; Brauer M; Van Netten C; Dill B
    Ann Occup Hyg; 2004 Aug; 48(6):547-54. PubMed ID: 15302620
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Changing microbial concentrations are associated with ventilation performance in Taiwan's air-conditioned office buildings.
    Wu PC; Li YY; Chiang CM; Huang CY; Lee CC; Li FC; Su HJ
    Indoor Air; 2005 Feb; 15(1):19-26. PubMed ID: 15660566
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An extreme learning machine model for the simulation of monthly mean streamflow water level in eastern Queensland.
    Deo RC; Şahin M
    Environ Monit Assess; 2016 Feb; 188(2):90. PubMed ID: 26780409
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Indicators of airborne fungal concentrations in urban homes: understanding the conditions that affect indoor fungal exposures.
    Crawford JA; Rosenbaum PF; Anagnost SE; Hunt A; Abraham JL
    Sci Total Environ; 2015 Jun; 517():113-24. PubMed ID: 25725196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.