BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

324 related articles for article (PubMed ID: 31030570)

  • 1. Extensive phenotype data and machine learning in prediction of mortality in acute coronary syndrome - the MADDEC study.
    Hernesniemi JA; Mahdiani S; Tynkkynen JA; Lyytikäinen LP; Mishra PP; Lehtimäki T; Eskola M; Nikus K; Antila K; Oksala N
    Ann Med; 2019 Mar; 51(2):156-163. PubMed ID: 31030570
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of machine learning models to predict in-hospital mortality in patients with acute coronary syndrome.
    Li R; Shen L; Ma W; Yan B; Chen W; Zhu J; Li L; Yuan J; Pan C
    Clin Cardiol; 2023 Feb; 46(2):184-194. PubMed ID: 36479714
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Machine learning for prediction of 30-day mortality after ST elevation myocardial infraction: An Acute Coronary Syndrome Israeli Survey data mining study.
    Shouval R; Hadanny A; Shlomo N; Iakobishvili Z; Unger R; Zahger D; Alcalai R; Atar S; Gottlieb S; Matetzky S; Goldenberg I; Beigel R
    Int J Cardiol; 2017 Nov; 246():7-13. PubMed ID: 28867023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predictive value of NT-proBNP for 30-day mortality in patients with non-ST-elevation acute coronary syndromes: a comparison with the GRACE and TIMI risk scores.
    Schellings DA; Adiyaman A; Dambrink JE; Gosselink AM; Kedhi E; Roolvink V; Ottervanger JP; Van't Hof AW
    Vasc Health Risk Manag; 2016; 12():471-476. PubMed ID: 27920547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The association between charlson comorbidity index and mortality in acute coronary syndrome - the MADDEC study.
    Hautamäki M; Lyytikäinen LP; Mahdiani S; Eskola M; Lehtimäki T; Nikus K; Antila K; Oksala N; Hernesniemi J
    Scand Cardiovasc J; 2020 Jun; 54(3):146-152. PubMed ID: 31775530
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparison of Machine Learning Methods With National Cardiovascular Data Registry Models for Prediction of Risk of Bleeding After Percutaneous Coronary Intervention.
    Mortazavi BJ; Bucholz EM; Desai NR; Huang C; Curtis JP; Masoudi FA; Shaw RE; Negahban SN; Krumholz HM
    JAMA Netw Open; 2019 Jul; 2(7):e196835. PubMed ID: 31290991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Predicting 30-day mortality after ST elevation myocardial infarction: Machine learning- based random forest and its external validation using two independent nationwide datasets.
    Hadanny A; Shouval R; Wu J; Shlomo N; Unger R; Zahger D; Matetzky S; Goldenberg I; Beigel R; Gale C; Iakobishvili Z
    J Cardiol; 2021 Nov; 78(5):439-446. PubMed ID: 34154875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of the Global Registry of Acute Coronary Events (GRACE) Risk Score in Contemporary Treatment of Patients With Acute Coronary Syndrome.
    Shuvy M; Beeri G; Klein E; Cohen T; Shlomo N; Minha S; Pereg D
    Can J Cardiol; 2018 Dec; 34(12):1613-1617. PubMed ID: 30527149
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Choosing Clinical Variables for Risk Stratification Post-Acute Coronary Syndrome.
    Myers PD; Huang W; Anderson F; Stultz CM
    Sci Rep; 2019 Oct; 9(1):14631. PubMed ID: 31601916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Admission Serum Calcium Levels Improve the GRACE Risk Score Prediction of Hospital Mortality in Patients With Acute Coronary Syndrome.
    Yan SD; Liu XJ; Peng Y; Xia TL; Liu W; Tsauo JY; Xu YN; Chai H; Huang FY; Chen M; Huang DJ
    Clin Cardiol; 2016 Sep; 39(9):516-23. PubMed ID: 27279131
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of clinical and angiographic prognostic risk scores in elderly patients presenting with acute coronary syndrome and referred for percutaneous coronary intervention.
    Vassalli G; d'Angeli I; Scherff F; Sürder D; Mantovani A; Pasotti E; Klersy C; Auricchio A; Moccetti T; Pedrazzini GB
    Swiss Med Wkly; 2015; 145():w14049. PubMed ID: 25658654
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Comparison of machine learning method and logistic regression model in prediction of acute kidney injury in severely burned patients].
    Tang CQ; Li JQ; Xu DY; Liu XB; Hou WJ; Lyu KY; Xiao SC; Xia ZF
    Zhonghua Shao Shang Za Zhi; 2018 Jun; 34(6):343-348. PubMed ID: 29961290
    [No Abstract]   [Full Text] [Related]  

  • 13. A new approach for interpretability and reliability in clinical risk prediction: Acute coronary syndrome scenario.
    Valente F; Henriques J; Paredes S; Rocha T; de Carvalho P; Morais J
    Artif Intell Med; 2021 Jul; 117():102113. PubMed ID: 34127242
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and performance assessment of novel machine learning models to predict pneumonia after liver transplantation.
    Chen C; Yang D; Gao S; Zhang Y; Chen L; Wang B; Mo Z; Yang Y; Hei Z; Zhou S
    Respir Res; 2021 Mar; 22(1):94. PubMed ID: 33789673
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction.
    Khera R; Haimovich J; Hurley NC; McNamara R; Spertus JA; Desai N; Rumsfeld JS; Masoudi FA; Huang C; Normand SL; Mortazavi BJ; Krumholz HM
    JAMA Cardiol; 2021 Jun; 6(6):633-641. PubMed ID: 33688915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Validation of the Global Registry of Acute Coronary Event (GRACE) risk score for in-hospital mortality in patients with acute coronary syndrome in Canada.
    Elbarouni B; Goodman SG; Yan RT; Welsh RC; Kornder JM; Deyoung JP; Wong GC; Rose B; Grondin FR; Gallo R; Tan M; Casanova A; Eagle KA; Yan AT;
    Am Heart J; 2009 Sep; 158(3):392-9. PubMed ID: 19699862
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Walking beyond the GRACE (Global Registry of Acute Coronary Events) model in the death risk stratification during hospitalization in patients with acute coronary syndrome: what do the AR-G (ACTION [Acute Coronary Treatment and Intervention Outcomes Network] Registry and GWTG [Get With the Guidelines] Database), NCDR (National Cardiovascular Data Registry), and EuroHeart Risk Scores Provide?
    Raposeiras-Roubín S; Abu-Assi E; Cabanas-Grandío P; Agra-Bermejo RM; Gestal-Romarí S; Pereira-López E; Fandiño-Vaquero R; Álvarez-Álvarez B; Cambeiro C; Rodríguez-Cordero M; Lear P; Martínez-Monzonís A; Peña-Gil C; García-Acuña JM; González-Juanatey JR
    JACC Cardiovasc Interv; 2012 Nov; 5(11):1117-25. PubMed ID: 23174635
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adding the value of the Charlson Comorbidity Index to the GRACE score for mortality prediction in acute coronary syndromes.
    Campanile A; Prota C; Tedeschi M; Giano A; Pianese B; Cristiano M; Pompa A; Sorrentino R; Vigorito F; Ravera A
    J Cardiovasc Med (Hagerstown); 2024 Feb; 25(2):114-122. PubMed ID: 38051655
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Prediction of In-hospital Mortality in Emergency Department Patients With Sepsis: A Local Big Data-Driven, Machine Learning Approach.
    Taylor RA; Pare JR; Venkatesh AK; Mowafi H; Melnick ER; Fleischman W; Hall MK
    Acad Emerg Med; 2016 Mar; 23(3):269-78. PubMed ID: 26679719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Validity of the updated GRACE risk predictor (version 2.0) in patients with non-ST-elevation acute coronary syndrome.
    Akyuz S; Yazici S; Bozbeyoglu E; Onuk T; Yildirimturk O; Karacimen D; Hayiroglu MI; Erdogan G; Oner AO; Calik AN; Cagdas M; Cam N
    Rev Port Cardiol; 2016 Jan; 35(1):25-31. PubMed ID: 26718493
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.