These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 31030575)
1. Transcription factor engineering in CHO cells for recombinant protein production. Gutiérrez-González M; Latorre Y; Zúñiga R; Aguillón JC; Molina MC; Altamirano C Crit Rev Biotechnol; 2019 Aug; 39(5):665-679. PubMed ID: 31030575 [TBL] [Abstract][Full Text] [Related]
2. Synthetic promoters for CHO cell engineering. Brown AJ; Sweeney B; Mainwaring DO; James DC Biotechnol Bioeng; 2014 Aug; 111(8):1638-47. PubMed ID: 24615264 [TBL] [Abstract][Full Text] [Related]
3. Xbp1-based engineering of secretory capacity enhances the productivity of Chinese hamster ovary cells. Tigges M; Fussenegger M Metab Eng; 2006 May; 8(3):264-72. PubMed ID: 16635796 [TBL] [Abstract][Full Text] [Related]
4. Engineered and Natural Promoters and Chromatin-Modifying Elements for Recombinant Protein Expression in CHO Cells. Romanova N; Noll T Biotechnol J; 2018 Mar; 13(3):e1700232. PubMed ID: 29145694 [TBL] [Abstract][Full Text] [Related]
5. Reprogramming of Chinese hamster ovary cells towards enhanced protein secretion. Torres M; Dickson AJ Metab Eng; 2022 Jan; 69():249-261. PubMed ID: 34929420 [TBL] [Abstract][Full Text] [Related]
6. Precision control of recombinant gene transcription for CHO cell synthetic biology. Brown AJ; James DC Biotechnol Adv; 2016; 34(5):492-503. PubMed ID: 26721629 [TBL] [Abstract][Full Text] [Related]
7. CHO genome mining for synthetic promoter design. Johari YB; Brown AJ; Alves CS; Zhou Y; Wright CM; Estes SD; Kshirsagar R; James DC J Biotechnol; 2019 Mar; 294():1-13. PubMed ID: 30703471 [TBL] [Abstract][Full Text] [Related]
8. High-level expression of proteins in mammalian cells using transcription regulatory sequences from the Chinese hamster EF-1alpha gene. Running Deer J; Allison DS Biotechnol Prog; 2004; 20(3):880-9. PubMed ID: 15176895 [TBL] [Abstract][Full Text] [Related]
9. Activation of unfolded protein response pathway is important for valproic acid mediated increase in immunoglobulin G productivity in recombinant Chinese hamster ovary cells. Segar KP; Chandrawanshi V; Mehra S J Biosci Bioeng; 2017 Oct; 124(4):459-468. PubMed ID: 28601608 [TBL] [Abstract][Full Text] [Related]
10. An XBP-1 dependent bottle-neck in production of IgG subtype antibodies in chemically defined serum-free Chinese hamster ovary (CHO) fed-batch processes. Becker E; Florin L; Pfizenmaier K; Kaufmann H J Biotechnol; 2008 Jun; 135(2):217-23. PubMed ID: 18448183 [TBL] [Abstract][Full Text] [Related]
11. Bioinformatic Identification of Chinese Hamster Ovary (CHO) Cold-Shock Genes and Biological Evidence of their Cold-Inducible Promoters. Nguyen LN; Novak N; Baumann M; Koehn J; Borth N Biotechnol J; 2020 Mar; 15(3):e1900359. PubMed ID: 31785035 [TBL] [Abstract][Full Text] [Related]
12. Enhanced protein production by engineered zinc finger proteins. Reik A; Zhou Y; Collingwood TN; Warfe L; Bartsevich V; Kong Y; Henning KA; Fallentine BK; Zhang L; Zhong X; Jouvenot Y; Jamieson AC; Rebar EJ; Case CC; Korman A; Li XY; Black A; King DJ; Gregory PD Biotechnol Bioeng; 2007 Aug; 97(5):1180-9. PubMed ID: 17171718 [TBL] [Abstract][Full Text] [Related]
13. Differential Phosphoproteomic Analysis of Recombinant Chinese Hamster Ovary Cells Following Temperature Shift. Henry M; Power M; Kaushik P; Coleman O; Clynes M; Meleady P J Proteome Res; 2017 Jul; 16(7):2339-2358. PubMed ID: 28509555 [TBL] [Abstract][Full Text] [Related]
14. Improved production of recombinant human antithrombin III in Chinese hamster ovary cells by ATF4 overexpression. Ohya T; Hayashi T; Kiyama E; Nishii H; Miki H; Kobayashi K; Honda K; Omasa T; Ohtake H Biotechnol Bioeng; 2008 Jun; 100(2):317-24. PubMed ID: 18078289 [TBL] [Abstract][Full Text] [Related]
15. Effects of overexpression of X-box binding protein 1 on recombinant protein production in Chinese hamster ovary and NS0 myeloma cells. Ku SC; Ng DT; Yap MG; Chao SH Biotechnol Bioeng; 2008 Jan; 99(1):155-64. PubMed ID: 17614336 [TBL] [Abstract][Full Text] [Related]
16. Analysis of intracellular IgG secretion in Chinese hamster ovary cells to improve IgG production. Kaneyoshi K; Uchiyama K; Onitsuka M; Yamano N; Koga Y; Omasa T J Biosci Bioeng; 2019 Jan; 127(1):107-113. PubMed ID: 30017708 [TBL] [Abstract][Full Text] [Related]
17. Engineering of Chinese hamster ovary cells for co-overexpressing MYC and XBP1s increased cell proliferation and recombinant EPO production. Latorre Y; Torres M; Vergara M; Berrios J; Sampayo MM; Gödecke N; Wirth D; Hauser H; Dickson AJ; Altamirano C Sci Rep; 2023 Jan; 13(1):1482. PubMed ID: 36707606 [TBL] [Abstract][Full Text] [Related]
18. Attenuating apoptosis in Chinese hamster ovary cells for improved biopharmaceutical production. Henry MN; MacDonald MA; Orellana CA; Gray PP; Gillard M; Baker K; Nielsen LK; Marcellin E; Mahler S; Martínez VS Biotechnol Bioeng; 2020 Apr; 117(4):1187-1203. PubMed ID: 31930480 [TBL] [Abstract][Full Text] [Related]
19. RNA interference technology to improve recombinant protein production in Chinese hamster ovary cells. Wu SC Biotechnol Adv; 2009; 27(4):417-22. PubMed ID: 19289164 [TBL] [Abstract][Full Text] [Related]
20. Expression of the transcription factor GADD153 is an indicator of apoptosis for recombinant chinese hamster ovary (CHO) cells. Murphy TC; Woods NR; Dickson AJ Biotechnol Bioeng; 2001 Dec; 75(6):621-9. PubMed ID: 11745139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]