BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 31030612)

  • 1. Tailoring of recombinant FDH: effect of histidine tag location on solubility and catalytic properties of
    Esen H; Alpdağtaş S; Mervan Çakar M; Binay B
    Prep Biochem Biotechnol; 2019; 49(5):529-534. PubMed ID: 31030612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Chaetomium thermophilum formate dehydrogenase has high activity in the reduction of hydrogen carbonate (HCO3 -) to formate.
    Aslan AS; Valjakka J; Ruupunen J; Yildirim D; Turner NJ; Turunen O; Binay B
    Protein Eng Des Sel; 2017 Jan; 30(1):47-55. PubMed ID: 27887026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineered formate dehydrogenase from Chaetomium thermophilum, a promising enzymatic solution for biotechnical CO
    Çakar MM; Ruupunen J; Mangas-Sanchez J; Birmingham WR; Yildirim D; Turunen O; Turner NJ; Valjakka J; Binay B
    Biotechnol Lett; 2020 Nov; 42(11):2251-2262. PubMed ID: 32557118
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional effects of active site mutations in NAD+-dependent formate dehydrogenases on transformation of hydrogen carbonate to formate.
    Pala U; Yelmazer B; Çorbacioglu M; Ruupunen J; Valjakka J; Turunen O; Binay B
    Protein Eng Des Sel; 2018 Sep; 31(9):327-335. PubMed ID: 30321426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-level heterologous expression of active Chaetomium thermophilum FDH in Pichia pastoris.
    Duman ZE; Duraksoy BB; Aktaş F; Woodley JM; Binay B
    Enzyme Microb Technol; 2020 Jun; 137():109552. PubMed ID: 32423672
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Metal Ions on the Activity of Ten NAD-Dependent Formate Dehydrogenases.
    Bulut H; Valjakka J; Yuksel B; Yilmazer B; Turunen O; Binay B
    Protein J; 2020 Oct; 39(5):519-530. PubMed ID: 33043425
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural insights into the NAD
    Yilmazer B; Isupov MN; De Rose SA; Bulut H; Benninghoff JC; Binay B; Littlechild JA
    J Struct Biol; 2020 Dec; 212(3):107657. PubMed ID: 33148525
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving the purification of NAD+-dependent formate dehydrogenase from Candida methylica.
    Ordu EB; Karagüler NG
    Prep Biochem Biotechnol; 2007; 37(4):333-41. PubMed ID: 17849288
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancing recombinant Chaetomium thermophilium Formate Dehydrogenase Expression with CRISPR Technology.
    Ar E; Demiroğlu A; Yılmaz MS; Yılmazer B; Aslan ES; Binay B
    Protein J; 2021 Aug; 40(4):504-511. PubMed ID: 33999303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein engineering of formate dehydrogenase.
    Tishkov VI; Popov VO
    Biomol Eng; 2006 Jun; 23(2-3):89-110. PubMed ID: 16546445
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of Formate from CO
    Yu X; Niks D; Ge X; Liu H; Hille R; Mulchandani A
    Biochemistry; 2019 Apr; 58(14):1861-1868. PubMed ID: 30839197
    [TBL] [Abstract][Full Text] [Related]  

  • 12. DMSO tolerant NAD(P)H recycler enzyme from a pathogenic bacterium,
    Alpdağtaş S; Çelik A; Ertan F; Binay B
    Eng Life Sci; 2018 Dec; 18(12):893-903. PubMed ID: 32624883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Formate dehydrogenase and its application in biomanufacturing of chiral chemicals].
    Cheng F; Wei L; Wang C; Xue Y; Zheng Y
    Sheng Wu Gong Cheng Xue Bao; 2022 Feb; 38(2):632-649. PubMed ID: 35234387
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cloning, nucleotide sequencing, and expression in Escherichia coli of the gene for formate dehydrogenase of Paracoccus sp. 12-A, a formate-assimilating bacterium.
    Shinoda T; Satoh T; Mineki S; Iida M; Taguchi H
    Biosci Biotechnol Biochem; 2002 Feb; 66(2):271-6. PubMed ID: 11999398
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Periplasmic nitrate reductase and formate dehydrogenase: similar molecular architectures with very different enzymatic activities.
    Cerqueira NM; Gonzalez PJ; Fernandes PA; Moura JJ; Ramos MJ
    Acc Chem Res; 2015 Nov; 48(11):2875-84. PubMed ID: 26509703
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of catalysis, substrate, and coenzyme binding sites and improvement catalytic efficiency of formate dehydrogenase from Candida boidinii.
    Jiang W; Lin P; Yang R; Fang B
    Appl Microbiol Biotechnol; 2016 Oct; 100(19):8425-37. PubMed ID: 27198726
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Active-site characterization of Candida boidinii formate dehydrogenase.
    Labrou NE; Rigden DJ
    Biochem J; 2001 Mar; 354(Pt 2):455-63. PubMed ID: 11171126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Conserved Amino Acid Residues that Affect Structural Stability of Candida boidinii Formate Dehydrogenase.
    Bulut H; Yuksel B; Gul M; Eren M; Karatas E; Kara N; Yilmazer B; Kocyigit A; Labrou NE; Binay B
    Appl Biochem Biotechnol; 2021 Feb; 193(2):363-376. PubMed ID: 32974869
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of His-tag on Catalytic Activity and Enantioselectivity of Recombinant Transaminases.
    Meng L; Liu Y; Yin X; Zhou H; Wu J; Wu M; Yang L
    Appl Biochem Biotechnol; 2020 Mar; 190(3):880-895. PubMed ID: 31515673
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Biocatalytic Properties of an Azoreductase via the N-Terminal Fusion of Formate Dehydrogenase.
    Ngo ACR; Schultes FPJ; Maier A; Hadewig SNH; Tischler D
    Chembiochem; 2022 Mar; 23(6):e202100643. PubMed ID: 35080802
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.