These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31030884)

  • 21. A Simple and Powerful Analysis of Lateral Subdiffusion Using Single Particle Tracking.
    Renner M; Wang L; Levi S; Hennekinne L; Triller A
    Biophys J; 2017 Dec; 113(11):2452-2463. PubMed ID: 29211999
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dimerization of iLID optogenetic proteins observed using 3D single-molecule tracking in live E. coli.
    Achimovich AM; Yan T; Gahlmann A
    Biophys J; 2023 Aug; 122(16):3254-3267. PubMed ID: 37421134
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Versatile analysis of single-molecule tracking data by comprehensive testing against Monte Carlo simulations.
    Wieser S; Axmann M; Schütz GJ
    Biophys J; 2008 Dec; 95(12):5988-6001. PubMed ID: 18805933
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Statistical analysis of lateral diffusion and multistate kinetics in single-molecule imaging.
    Matsuoka S; Shibata T; Ueda M
    Biophys J; 2009 Aug; 97(4):1115-24. PubMed ID: 19686659
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Single particle tracking of complex diffusion in membranes: simulation and detection of barrier, raft, and interaction phenomena.
    Jin S; Verkman AS
    J Phys Chem B; 2007 Apr; 111(14):3625-32. PubMed ID: 17388520
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Multi-State Transition Kinetics of Intracellular Signaling Molecules by Single-Molecule Imaging Analysis.
    Matsuoka S; Miyanaga Y; Ueda M
    Methods Mol Biol; 2016; 1407():361-79. PubMed ID: 27271914
    [TBL] [Abstract][Full Text] [Related]  

  • 27. ExTrack characterizes transition kinetics and diffusion in noisy single-particle tracks.
    Simon F; Tinevez JY; van Teeffelen S
    J Cell Biol; 2023 May; 222(5):. PubMed ID: 36880553
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fluorescence correlation spectroscopy simulations of photophysical phenomena and molecular interactions: a molecular dynamics/monte carlo approach.
    Dix JA; Hom EF; Verkman AS
    J Phys Chem B; 2006 Feb; 110(4):1896-906. PubMed ID: 16471761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Single-lipid tracking on nanoscale membrane buds: The effects of curvature on lipid diffusion and sorting.
    Woodward X; Stimpson EE; Kelly CV
    Biochim Biophys Acta Biomembr; 2018 Oct; 1860(10):2064-2075. PubMed ID: 29856992
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tweezepy: A Python package for calibrating forces in single-molecule video-tracking experiments.
    Morgan IL; Saleh OA
    PLoS One; 2021; 16(12):e0262028. PubMed ID: 34972160
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoscale topography influences polymer surface diffusion.
    Wang D; He C; Stoykovich MP; Schwartz DK
    ACS Nano; 2015 Feb; 9(2):1656-64. PubMed ID: 25621372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cytoplasmic convection currents and intracellular temperature gradients.
    Howard R; Scheiner A; Cunningham J; Gatenby R
    PLoS Comput Biol; 2019 Nov; 15(11):e1007372. PubMed ID: 31682599
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Non-Gaussianity, population heterogeneity, and transient superdiffusion in the spreading dynamics of amoeboid cells.
    Cherstvy AG; Nagel O; Beta C; Metzler R
    Phys Chem Chem Phys; 2018 Sep; 20(35):23034-23054. PubMed ID: 30167616
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-particle diffusional fingerprinting: A machine-learning framework for quantitative analysis of heterogeneous diffusion.
    Pinholt HD; Bohr SS; Iversen JF; Boomsma W; Hatzakis NS
    Proc Natl Acad Sci U S A; 2021 Aug; 118(31):. PubMed ID: 34321355
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multivalent Diffusive Transport.
    Kowalewski A; Forde NR; Korosec CS
    J Phys Chem B; 2021 Jul; 125(25):6857-6863. PubMed ID: 34151560
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Diffusion Analysis of NAnoscopic Ensembles: A Tracking-Free Diffusivity Analysis for NAnoscopic Ensembles in Biological Samples and Nanotechnology.
    Wolf A; Volz-Rakebrand P; Balke J; Alexiev U
    Small; 2023 Apr; 19(16):e2206722. PubMed ID: 36670094
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Extracting Diffusive States of Rho GTPase in Live Cells: Towards In Vivo Biochemistry.
    Koo PK; Weitzman M; Sabanaygam CR; van Golen KL; Mochrie SG
    PLoS Comput Biol; 2015 Oct; 11(10):e1004297. PubMed ID: 26512894
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Particle-based simulations of polarity establishment reveal stochastic promotion of Turing pattern formation.
    Pablo M; Ramirez SA; Elston TC
    PLoS Comput Biol; 2018 Mar; 14(3):e1006016. PubMed ID: 29529021
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Applying Perturbation Expectation-Maximization to Protein Trajectories of Rho GTPases.
    Koo PK; Mochrie SGJ
    Methods Mol Biol; 2018; 1821():57-70. PubMed ID: 30062405
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spatial heterogeneity of the cytosol revealed by machine learning-based 3D particle tracking.
    McLaughlin GA; Langdon EM; Crutchley JM; Holt LJ; Forest MG; Newby JM; Gladfelter AS
    Mol Biol Cell; 2020 Jul; 31(14):1498-1511. PubMed ID: 32401664
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.