BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 31031520)

  • 21. Environmental drivers alter PUFA content in littoral macroinvertebrate assemblages via changes in richness and abundance.
    Strandberg U; Arhonditsis G; Kesti P; Vesterinen J; Vesamäki JS; Taipale SJ; Kankaala P
    Aquat Sci; 2023; 85(4):100. PubMed ID: 37663589
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Eutrophication and Dreissena invasion as drivers of biodiversity: a century of change in the mollusc community of Oneida Lake.
    Karatayev VA; Karatayev AY; Burlakova LE; Rudstam LG
    PLoS One; 2014; 9(7):e101388. PubMed ID: 25010705
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Depth-related response of macroinvertebrates to the reversal of eutrophication in a Mediterranean lake: Implications for ecological assessment.
    Bazzanti M; Mastrantuono L; Pilotto F
    Sci Total Environ; 2017 Feb; 579():456-465. PubMed ID: 27876388
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Concentrations and Long-Term Temporal Trends of Hexabromocyclododecanes (HBCDD) in Lake Trout and Walleye from the Great Lakes.
    Parvizian BA; Zhou C; Fernando S; Crimmins BS; Hopke PK; Holsen TM
    Environ Sci Technol; 2020 May; 54(10):6134-6141. PubMed ID: 32298100
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Spatio-temporal dynamics of parasites infecting Diporeia spp. (Amphipoda, Gammaridae) in southern Lake Michigan (USA).
    Winters AD; Fitzgerald S; Brenden TO; Nalepa T; Faisal M
    J Invertebr Pathol; 2014 Sep; 121():37-45. PubMed ID: 24991698
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Microbial communities of the Laurentian Great Lakes reflect connectivity and local biogeochemistry.
    Paver SF; Newton RJ; Coleman ML
    Environ Microbiol; 2020 Jan; 22(1):433-446. PubMed ID: 31736217
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Impacts of piscicide-induced fish removal on resource use and trophic diversity of lake invertebrates.
    Eloranta AP; Kjærstad G; Power M; Lakka HK; Arnekleiv JV; Finstad AG
    Sci Total Environ; 2022 Aug; 835():155364. PubMed ID: 35469880
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Potential for large-bodied zooplankton and dreissenids to alter the productivity and autotrophic structure of lakes.
    Higgins SN; Althouse B; Devlin SP; Vadeboncoeur Y; Vander Zanden MJ
    Ecology; 2014 Aug; 95(8):2257-67. PubMed ID: 25230476
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A comparison of the benthic bacterial communities within and surrounding Dreissena clusters in lakes.
    Lohner RN; Sigler V; Mayer CM; Balogh C
    Microb Ecol; 2007 Oct; 54(3):469-77. PubMed ID: 17308984
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Functional differentiation accompanies taxonomic homogenization in freshwater fish communities.
    Campbell SE; Mandrak NE
    Ecology; 2020 Dec; 101(12):e03188. PubMed ID: 32876942
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Benthic algal production across lake size gradients: interactions among morphometry, nutrients, and light.
    Vadeboncoeur Y; Peterson G; Vander Zanden MJ; Kalff J
    Ecology; 2008 Sep; 89(9):2542-52. PubMed ID: 18831175
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Invasive dreissenid mussels and benthic algae in Lake Michigan: characterizing effects on sediment bacterial communities.
    Lee PO; McLellan SL; Graham LE; Young EB
    FEMS Microbiol Ecol; 2015 Jan; 91(1):1-12. PubMed ID: 25764528
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Metolachlor and atrazine in the great lakes.
    Kurt-Karakus PB; Muir DC; Bidleman TF; Small J; Backus S; Dove A
    Environ Sci Technol; 2010 Jun; 44(12):4678-84. PubMed ID: 20504016
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Do invasive quagga mussels alter CO
    Lin P; Guo L
    Sci Rep; 2016 Dec; 6():39078. PubMed ID: 27996017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A new WFD-compliant littoral macroinvertebrate index for monitoring and assessment of Mediterranean lakes (HeLLBI).
    Mavromati E; Kemitzoglou D; Tsiaoussi V; Lazaridou M
    Environ Monit Assess; 2021 Oct; 193(11):745. PubMed ID: 34686935
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Mercury levels in herring gulls and fish: 42 years of spatio-temporal trends in the Great Lakes.
    Blukacz-Richards EA; Visha A; Graham ML; McGoldrick DL; de Solla SR; Moore DJ; Arhonditsis GB
    Chemosphere; 2017 Apr; 172():476-487. PubMed ID: 28092768
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nearshore energy subsidies support Lake Michigan fishes and invertebrates following major changes in food web structure.
    Turschak BA; Bunnell D; Czesny S; Höök TO; Janssen J; Warner D; Bootsma HA
    Ecology; 2014 May; 95(5):1243-52. PubMed ID: 25000756
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Assessment of shoreline restoration using macroinvertebrates in a Great Lakes Area of Concern.
    Orzechowski RM; Steinman AD
    Environ Monit Assess; 2022 Mar; 194(4):260. PubMed ID: 35257244
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does water level affect benthic macro-invertebrates of a marginal lake in a tropical river-reservoir transition zone?
    Zerlin RA; Henry R
    Braz J Biol; 2014 May; 74(2):408-19. PubMed ID: 25166325
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Palearctic predator invades North American Great Lakes.
    Lehman JT
    Oecologia; 1987 Dec; 74(3):478-480. PubMed ID: 28312490
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.