These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 31031549)

  • 1. Photothermal effect of Ag nanoparticles deposited over poly(amidoamine) grafted carbon nanotubes.
    Neelgund GM; Oki A
    J Photochem Photobiol A Chem; 2018 Sep; 364():309-315. PubMed ID: 31031549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Advancement in Photothermal Effect of Carbon Nanotubes by Grafting of Poly(amidoamine) and Deposition of CdS Nanocrystallites.
    Neelgund GM; Oki A
    Ind Eng Chem Res; 2018 Jun; 57(23):7826-7833. PubMed ID: 30956391
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ag
    Neelgund GM; Okolie MC; Williams FK; Oki A
    Mater Chem Phys; 2019 Aug; 234():32-37. PubMed ID: 32123461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevated Adsorption of Lead and Arsenic over Silver Nanoparticles Deposited on Poly(amidoamine) Grafted Carbon Nanotubes.
    Neelgund GM; Aguilar SF; Kurkuri MD; Rodrigues DF; Ray RL
    Nanomaterials (Basel); 2022 Nov; 12(21):. PubMed ID: 36364628
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Black phosphorus nanosheets-based platform for targeted chemo-photothermal synergistic cancer therapy.
    Peng F; Zhao F; Shan L; Li R; Jiang S; Zhang P
    Colloids Surf B Biointerfaces; 2021 Feb; 198():111467. PubMed ID: 33302151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal effect and cytotoxicity of CuS nanoflowers deposited over folic acid conjugated nanographene oxide.
    Neelgund GM; Oki A; Bandara S; Carson L
    J Mater Chem B; 2021 Feb; 9(7):1792-1803. PubMed ID: 33393530
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon nanotubes for delivery of small molecule drugs.
    Wong BS; Yoong SL; Jagusiak A; Panczyk T; Ho HK; Ang WH; Pastorin G
    Adv Drug Deliv Rev; 2013 Dec; 65(15):1964-2015. PubMed ID: 23954402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Influence of carbon nanotubes and graphene nanosheets on photothermal effect of hydroxyapatite.
    Neelgund GM; Oki AR
    J Colloid Interface Sci; 2016 Dec; 484():135-145. PubMed ID: 27599382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation of airborne Ag/CNT hybrid nanoparticles using an aerosol process and their application to antimicrobial air filtration.
    Jung JH; Hwang GB; Lee JE; Bae GN
    Langmuir; 2011 Aug; 27(16):10256-64. PubMed ID: 21751779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PEGylated Carbon Nanotubes Decorated with Silver Nanoparticles: Fabrication, Cell Cytotoxicity and Application in Photo Thermal Therapy.
    Behnam MA; Emami F; Sobhani Z
    Iran J Pharm Res; 2021; 20(1):91-104. PubMed ID: 34400944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indocyanine Green-Loaded Silver Nanoparticle@Polyaniline Core/Shell Theranostic Nanocomposites for Photoacoustic/Near-Infrared Fluorescence Imaging-Guided and Single-Light-Triggered Photothermal and Photodynamic Therapy.
    Tan X; Wang J; Pang X; Liu L; Sun Q; You Q; Tan F; Li N
    ACS Appl Mater Interfaces; 2016 Dec; 8(51):34991-35003. PubMed ID: 27957854
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendrimer-modified gold nanorods as a platform for combinational gene therapy and photothermal therapy of tumors.
    Ye L; Chen Y; Mao J; Lei X; Yang Q; Cui C
    J Exp Clin Cancer Res; 2021 Sep; 40(1):303. PubMed ID: 34579760
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel combination of multi-walled carbon nanotubes and gold nanocomposite for photothermal therapy in human breast cancer model.
    Naser Mohammed S; Mishaal Mohammed A; Al-Rawi KF
    Steroids; 2022 Oct; 186():109091. PubMed ID: 35863403
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Core-shell-shell nanorods for controlled release of silver that can serve as a nanoheater for photothermal treatment on bacteria.
    Hu B; Wang N; Han L; Chen ML; Wang JH
    Acta Biomater; 2015 Jan; 11():511-9. PubMed ID: 25219350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of copper vacancy defects in a silver-doped CuS nanoplatform for high-efficiency photothermal-chemodynamic synergistic antitumor therapy.
    Qin Z; Qiu M; Zhang Q; Yang S; Liao G; Xiong Z; Xu Z
    J Mater Chem B; 2021 Nov; 9(42):8882-8896. PubMed ID: 34693959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Immobilization of Highly Dispersed Ag Nanoparticles on Carbon Nanotubes Using Electron-Assisted Reduction for Antibacterial Performance.
    Yan X; Li S; Bao J; Zhang N; Fan B; Li R; Liu X; Pan YX
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17060-7. PubMed ID: 27327238
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbon Nanotubes Grown on the Carbon Fibers to Enhance the Photothermal Conversion toward Solar-Driven Applications.
    Liu H; Huang G; Wang R; Huang L; Wang H; Hu Y; Cong G; Bao F; Xu M; Zhu C; Xu J; Ji M
    ACS Appl Mater Interfaces; 2022 Jul; 14(28):32404-32411. PubMed ID: 35796654
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electron Donor-Acceptor Effect-Induced Organic/Inorganic Nanohybrids with Low Energy Gap for Highly Efficient Photothermal Therapy.
    Guiju Zhang ; Li K; He S; Wang L; Guan S; Zhou S; Xu B
    ACS Appl Mater Interfaces; 2021 Apr; 13(15):17920-17930. PubMed ID: 33827214
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Investigation of dual plasmonic core-shell Ag@CuS nanoparticles for potential surface-enhanced Raman spectroscopy-guided photothermal therapy.
    Das A; Arunagiri V; Tsai HC; Prasannan A; Lai JY; Da-Hong P; Moirangthem RS
    Nanomedicine (Lond); 2021 May; 16(11):909-923. PubMed ID: 33928793
    [No Abstract]   [Full Text] [Related]  

  • 20. Ag@TiO
    Nie C; Du P; Zhao H; Xie H; Li Y; Yao L; Shi Y; Hu L; Si S; Zhang M; Gu J; Luo L; Sun Z
    Chem Asian J; 2020 Jan; 15(1):148-155. PubMed ID: 31802635
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.